Skip to main content
Log in

Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The effects of oryzalin, a dinitroaniline herbicide, on chromosome behavior and on cellular microtubules (MTs) were examined by light microscopy and immunogold staining, respectively, in endosperm cells from Haemanthus katherinae Bak. Brief treatments with 1.0·10-8 M oryzalin reduced markedly the migration rate of anaphase chromosomes and 1.0·10-7 M oryzalin stopped migration abruptly. Oryzalin (1.0·10-7 M) depolymerized MTs and prevented the polymerization of new MTs at all stages of the mitotic cycle. The chromosome condensation cycle was unaffected by oryzalin. Endothelial cells from the heart of Xenopus leavis showed no chromosomal or microtubular rearrangements after oryzalin treatment. The inhibition by oryzalin of the polymerization of tubulin isolated from cultured cells of Rosa sp. cv. Paul's scarlet was examined in vitro by turbidimetry, electron microscopy and polymer sedimentation analysis. Oryzalin inhibited the rapid phase of taxol-induced polymerization of rose MTs at 24°C with an apparent inhibition constant (K i ) of 2.59·106 M. Shorter and fewer MTs were formed with increasing oryzalin concentrations, and maximum inhibition of taxol-induced polymerization occurred at approx. 1:1 molar ratios of oryzalin and tubulin. Oryzalin partially depolymerized taxol-stabilized rose MTs. Ligand-binding experiments with [14C]oryzalin demonstrated the formation of a tubulin-oryzalin complex that was time- and pH-dependent. The tubulin-oryzalin interaction (24°C, pH 7.1) had an apparent affinity constant (K app) of 1.19·105 M-1. Oryzalin did not inhibit taxol-induced polymerization of bovinebrain MTs and no appreciable binding of oryzalin to brain tubulin or other proteins was detected. The results demonstrate pharmacological differences between plant and animal tubulins and indicate that the most sensitive mode of action of the dinitroaniline herbicides is the direct poisoning of MT dynamics in cells of higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MT:

microtubule

SIB:

sucrose isolation buffer

TO:

tubulin-oryzalin complex

References

  • Ashton, F.M., Crafts, A.S. (1981) Mode of action of herbicides. wiley Interscience, New York

    Google Scholar 

  • Ashton, F.M., de Villiers, O.T., Glenn, R.K., Duke, W.B. (1977) Localization of metabolic sites of action of herbicides. Pestic. Biochem. Physiol. 7, 122–141

    Google Scholar 

  • bajer, A.S., Cypher, C., Molè-Bajer, J., Howard, H.M. (1982) Taxol-induced anaphase reversal: Evidence that elongating microtubules can exert a pushing force in living cells. Proc. Natl. Acad. Sci. USA 79, 6569–6573

    Google Scholar 

  • Bajer, A.S., Molè-Bajer, J. (1986) Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules. N.Y. Acad. Sci. 466, 767–784

    Google Scholar 

  • Bane, S., Puett, D., Macdonald, T.L., Williams, R.C., Jr. (1984) Binding to tubulin of the colchicine analog 2-methoxy-5-(2′, 3′,4′,-trimethoxyphenyl)tropone. J. Biol. Chem. 259, 7391–7398

    Google Scholar 

  • Bartels, P.G., Hilton, J.L. (1973) Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pestic. Biochem. Physiol. 3, 462–472

    Google Scholar 

  • Bayer, D.E., Foy, C.L., Mallory, T.E., Cutter, E.G. (1967) Morphological and histological effects of trifluralin on root development. Am J. Bot. 54, 945–952

    Google Scholar 

  • Borisy, G.G. (1972) A rapid method for quantitative determination of microtubule protein using DEAE-cellulose filters. Anal. Biochem. 50, 373–385

    Google Scholar 

  • De Mey, J., Lambert, A.M., Bajer, A.S., Moeremans, M., De-Brabander, M. (1982) Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc. Natl. Acad. Sci. USA 79, 1898–1902

    Google Scholar 

  • Dustin, P. (1984) Microtubules. Springer Verlag, Berlin

    Google Scholar 

  • Fedtke, C. (1982) Biochemistry and physiology of herbicide action. Springer Verlag, Berlin

    Google Scholar 

  • Fitzgerald, T.J. (1976) Molecular features of colchicine associated with antimitotic activity and inhibition of tubulin polymerization. Biochem. Pharmacol. 25, 1383–1387

    Google Scholar 

  • Gaskin, F., Cantor, C.R., Shelanski, M.L. (1974) Turbidometric studies of the in vitro assembly and disassembly of porcine neurotubules. J. Mol. Biol. 80, 737–758

    Google Scholar 

  • Gunning, B.E.S., Hardham, A.R. (1982) Microtubules. Annu. Rev. Plant Physiol. 33, 651–698

    Google Scholar 

  • Hertel, C., Marmé, D. (1983) Herbicides and fungicides inhibit Ca2+ uptake by plant mitochondria: a possible mechanism of action. Pestic. Biochem. Physiol. 19, 282–290

    Google Scholar 

  • Hertel, C., Quader, H., Robinson, D.G., Marmé, D. (1980) Anti-microtubular herbicides and fungicides affect Ca2+ transport in plant mitochondria. Planta 149, 336–340

    Google Scholar 

  • Hess, F.D. (1979) The influence of the herbicide trifluralin on flagellar regeneration in Chlamydomonas. Exp. Cell Res. 119, 99–109

    Google Scholar 

  • Hess, F.D., Bayer, D.E. (1974) The effect of trifluralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hirsutum L. Acala 4-42′) J. Cell Sci. 15, 429–441

    Google Scholar 

  • Hess, F.D., Bayer, D.E. (1977) Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J. Cell Sci. 24, 351–360

    Google Scholar 

  • Jackson, W.T., Stetler, D.A. (1973) Regulation of mitosis. IV. An in vitro and ultrastructural study of effects of trifluralin. Can. J. Bot. 51, 1513–1518

    Google Scholar 

  • Johnson, K.A., Borisy, G.G. (1975) The equilibrium assembly of microtubules in vitro. In: Molecules and cell movement, pp. 119–141, Inoue, S., Stephens, R.E., eds., Raven Press, New York

    Google Scholar 

  • Karr, T.L., Purich, D.L. (1979) A microtubule assembly/disassembly model based on drug effects and depolymerization kinetics after rapid dilution. J. Biol. Chem. 254, 10885–10888

    Google Scholar 

  • Klotz, I.M. (1982) Number of receptor sites from Scatchard graphs: facts and fantacies. Science 217, 1247–1249

    Google Scholar 

  • Kumar, N. (1981) Taxol-induced polymerization of purified tubulin. J. Biol. Chem. 256, 4156–4160

    Google Scholar 

  • Lee, J.C., frigon, R.P., Timasheff, S.N. (1973) The chemical characterization of calf brain microtubule protein subunits. J. Biol. Chem. 248, 7253–7262

    Google Scholar 

  • Margolis, R.L., Wilson, L. (1977) Addition of colchicine-tubulin complex to microtubule ends: The mechanism of substoichiometric colchicine poisoning. Proc. Natl. Acad. Sci. USA 74, 3466–3470

    Google Scholar 

  • Molè-Bajer, J. (1958) Cine-micrographic analysis of c-mitosis in endosperm. Chromosoma 9, 332–358

    Google Scholar 

  • Molè-Bajer, J., Bajer, A. (1968) Studies of selected endosperm cells with the light and electron microscope. Cellule 67, 257–265

    Google Scholar 

  • Morejohn, L.C., Bureau, T.E., Fosket, D.E. (1985) Inhibition of plant cell proteolytic activities that degrade tubulin. Cell Biol. Int. Rep. 9, 849–857

    Google Scholar 

  • Morejohn, L.C., Bureau, T.E., Tocchi, L.P., Fosket, D.E. (1984) Tubulins from different higher plant species are immunologically nonidentical and bind colchicine differentially. Proc. Natl. Acad. Sci. USA 81, 1440–1444

    Google Scholar 

  • Morejohn, L.C., Bureau, T.E., Tocchi, L.P., Fosket, D.E. (1987) Resistance of Rosa microtubule polymerization to colchicine results from a low-affinity interaction of colchicine and tubulin. Planta 170, 230–241

    Google Scholar 

  • Morejohn, L.C., Fosket, D.E. (1982) Higher plant tubulin identified by self-assembly into microtubules in vitro. Nature 297, 426–428

    Google Scholar 

  • Morejohn, L.C., Fosket, D.E. (1984a) Taxol-induced rose microtubule polymerization in vitro and its inhibition by colchicine. J. Cell Biol. 99, 141–147

    Google Scholar 

  • Morejohn, L.C., Fosket, D.E. (1984b) Inhibition of plant microtubule polymerization in vitro by the phosphoric amide herbicide amiprophos-methy. Science 224, 874–876

    Google Scholar 

  • Morejohn, L.C., Fosket, D.E. (1986) Tubulins from plants, fungi and protists: a review. In: Cell and molecular biology of the cytoskeleton, pp. 257–329, Shay, J.W., ed. Plenum Publishing Corp. New York

    Google Scholar 

  • Moreland, D.E., Farmer, F.S., Hussey, G.G. (1972a) Inhibition of photosynthesis and respiration by substituted 2,6-dinitroaniline herbicides. I. Effects on chloroplast and mitochondrial activities. Pestic. Biochem. Physiol. 2, 342–353

    Google Scholar 

  • Moreland, D.E., Farmer, F.S., Hussey, G.G. (1972b) Inhibition of photosynthesis and respiration by substituted 2,6-dinitroaniline herbicides. II. Effects on responses in excised plant tissues and treated seedlings. Pestic. Biochem. Physiol. 2, 354–363

    Google Scholar 

  • Mudge, L.C., Gossett, B.J., Murphy, T.R. (1984) Resistance of goosegrass (Eleusine indica) to dinitroaniline herbicides. Weed Sci. 32, 591–594

    Google Scholar 

  • Olmsted, J.B., Borisy, G.G. (1973) Characterization of microtubule assembly in porcine brain extracts by viscometry. Biochemistry 12, 4282–4289

    Google Scholar 

  • Ray, K., Bhattacharyya, B., Biswas, B.B. (1981) Role of B-ring of colchicine in its binding to tubulin. J. Biol. Chem. 256, 6241–6244

    Google Scholar 

  • Rieder, C.L., Bajer, A.S. (1978) Effect of elevated temperatures on spindle microtubules and chromosome movements in cultured newt lung cells. Cytobios 18, 201–234

    Google Scholar 

  • Robinson, D.G., Herzog, W. (1977) Structure, synthesis and orientation of microfibrils. III. A survey of the action of microtubule inhibitors on microtubules and microfibril orientation in Oocystis solitaria. Cytobiologie 15, 463–474

    Google Scholar 

  • Robinson, D.G., Quader, H. (1982) The microtubule-microfibril syndrome. In: The cytoskeleton in plant growth and development, pp. 109–126, Lloyd, C. ed. Academic Press, London

    Google Scholar 

  • Scatchard, G. (1949) The interactions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660–672

    Google Scholar 

  • Schiff, P.B., Horwitz, S.B. (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA 77, 1561–1565

    Google Scholar 

  • Schiff, P.B., Horwitz, S.B. (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule associated proteins. Biochemistry 20, 3247–3252

    Google Scholar 

  • Shelanski, M.L., Gaskin, F., Cantor, C.A. (1973) Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA 70, 765–768

    Google Scholar 

  • Sternlicht, H., Ringel, I. (1970) Colchicine inhibition of microtubule assembly via copolymer formation. J. Biol. Chem. 254, 10540–10550

    Google Scholar 

  • Strachen, S.D., Hess, F.D. (1982) Dinitroaniline herbicides adsorb to glass. J. Agric. Food Chem. 30, 389–391

    Google Scholar 

  • Strachen, S.D., Hess, F.D. (1983) The biochemical mechanism of action of the dinitroaniline berbicide oryzalin. Pestic. Biochem. Physiol. 20, 141–150

    Google Scholar 

  • Upadhyaya, M.K., Noodén, L.D. (1980) Mode of dinitroaniline action. II. Characterization of [14C]oryzalin uptake and binding. Plant Physiol. 66, 1048–1052

    Google Scholar 

  • Vaughn, K.C. (1986a) Cytological studies of dinitroaniline-resistant Eleusine. Pestic. Biochem. Physiol. 26, 66–74

    Google Scholar 

  • Vaughn, K.C. (1986b) Dinitroaniline resistance in goosegrass (Eleusine indica (L.) Gaertner.) is due to an altered tubulin. (Abstr.) Weed Sci. Soc. Am. 26, a 77

  • Vaughn, K.C., Marks, M.D., Weeks, D.P. (1987) A dinitroaniline-resistant mutant of Eleusine indica exhibits cross-resistance and super-sensitivity to antimicrotubule herbicides and drugs. Plant Physiol. 83, 956–964

    Google Scholar 

  • Wilson, L., Anderson, K., Chin, D. (1976) Nonstoichiometric poisoning of microtubule polymerization: A model for the mechansim of action of the vinca alkaloids, podophyllotoxin and colchicine. In: Cold Spring Harbor Conf. on Cell Proliferation (Book C), pp. 1051–1064, Goldman, R., Pollard, T., Rosenbaum, J., eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morejohn, L.C., Bureau, T.E., Molè-Bajer, J. et al. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172, 252–264 (1987). https://doi.org/10.1007/BF00394595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394595

Key words

Navigation