Skip to main content
Log in

Extracellular potassium and blood flow in the post-ischemic rat brain

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The concentration of extracellular potassium, [K+]e, was measured in parietal cortex and basal ganglia of rats during and after ten minutes of complete cerebral ischemia. The post-ischemic normalization of [K+]e was considerably delayed in parietal cortex compared to basal ganglia, but in both regions, [K+]e reached its normal concentration within 4 min of the end of the ischemia. Also, in both regions blood flow was elevated at the time of maximal [K+]3 decrease. Our findings suggest that the normalization of [K+]e and cerebrovascular resistance after ischemia are related by positive feed-back, possibly via the stimulation of Na+−K+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57

    Google Scholar 

  • Betz E, Enzenross HG, Vlahov V (1975) Interactions of ionic mechanisms in the regulation of the resistance of pial vessels. In: Langfitt TW, McHenry LC, Reivich M, Wollman H (eds) Cerebral circulation and metabolism. Springer, New York, p 49

    Google Scholar 

  • Branston NM, Strong AJ, Symon L (1977) Extracellular potassium activity, evoked potential and tissue blood flow. J Neurol Sci 32:305–321

    Google Scholar 

  • Cantu RC, Ames A III Digiacinto G, Dixon J (1969) Hypotension: A major factor limiting recovery from cerebral ischemia. J Surg Res 9:525–529

    Google Scholar 

  • Chiang J, Kowada M, Ames A III, Wright RL, Majno G (1968) Cerebral ischemia. III. Vascular changes. Am J Pathol 52:455–463

    Google Scholar 

  • Cordingley GE, Somjen GG (1978) The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex. Brain Res 151:291–306

    Google Scholar 

  • Crone C (1965) The permeability of brain capillaries to nonelectrolytes. Acta Physiol Scand 64:407–417

    Google Scholar 

  • Gjedde A, Hansen AJ, Siemkowicz E (1980a) Rapid simultaneous determination of regional cerebral blood flow and blood-brain glucose transfer in rats. In: Passoneau JV, Hawkins RA, Lust WD, Welsh FA (eds) Cerebral metabolism and neural function. The Williams and Wilkins Company, Baltimore, Maryland, p. 151

    Google Scholar 

  • Gjedde A, Hansen AJ, Siemkowicz E (1980b) Rapid simultaneous determination of regional blood flow and blood-brain glucose transfer in brain of rat. Acta Physiol Scand 108:321–330

    Google Scholar 

  • Hansen AJ (1976) The potassium concentration in cerebrospinal fluid in young and adult rats following complete brain ischemia. Effects of pretreatment with hypoxia. Acta Physiol Scand 97:519–522

    Google Scholar 

  • Hansen AJ (1977) Extracellular potassium concentration in juvenile and adult rat brain cortex during anoxia. Acta Physiol Scand 99:412–420

    Google Scholar 

  • Hansen AJ (1979) Brain extracellular ions in ischemia and spreading depression. Acta Physiol Scand (Suppl) 473; 58

    Google Scholar 

  • Hansen AJ, Olsen CE (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol Scand 108:355–365

    Google Scholar 

  • Hansen AJ, Lund-Andersen H, Crone C (1977) K+-permeability of the blood-brain barrier, investigated by aid of a K+-sensitive microelectrode. Acta Physiol Scand 101:438–445

    Google Scholar 

  • Hansen AJ, Gjedde A, Siemkowicz E (1980a) Extracellular K+ concentration and regional blood flow in rat brain following 10 min of cerebral ischemia. Acta Physiol Scand 105:69A

    Google Scholar 

  • Hansen AJ, Jahnsen H, Hounsgaard JD (1980b) Influence of hypoxia on hippocampal nerve cells in vitro. Acta Physiol Scand (Suppl) 473:55

    Google Scholar 

  • Hansen AJ, Quistorff B, Gjedde A (1980b) Relationship between local changes in cortical blood flow and extracellular K+ during spreading depression. Acta Physiol Scand 109:1–6

    Google Scholar 

  • Hossmann V, Hossmann KA (1973) Return of neuronal functions after prolonged cardiac arrest. Brain Res 60:423–437

    Google Scholar 

  • Hossmann KA, Lechtape-Grüter H (1971/72) Blood flow and recovery of the cat brain after complete ischemia for 1 hour. Eur Neurol 6:318–322

    Google Scholar 

  • Hossmann KA, Sasaki S, Zimmermann V (1977) Cation activities in reversible ischemia of the cat brain. Stroke 8:77–81

    Google Scholar 

  • Hossmann V, Hossmann KA, Takagi S (1980) Effect of intravascular platelet aggregation on blood recirculation following prolonged ischemia of the cat brain. J Neurol 222:159–170

    Google Scholar 

  • Ito U, Go KG, Walker JT Jr, Spatz M, Klatzo I (1976) Experimental cerebral ischemia in mongolian gerbils. III: Behaviour of the blood-brain barrier. Acta Neuropathol (Berl) 34:1–6

    Google Scholar 

  • Kuschinsky W, Wahl M (1977) Interactions between perivascular norepinephrine and potassium or osmolarity on pial arteries of cats. Microvasc Res 14:173–180

    Google Scholar 

  • Leniger-Follert E, Hossmann KA (1977) Microflow and cortical oxygen pressure during and after prolonged cerebral ischemia. Brain Res 124:158–161

    Google Scholar 

  • Ljunggren B, Norberg K, Siesjö BK (1974) Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77:173–186

    Google Scholar 

  • Makan NR (1979) Role of cytoplasmic ATP in the restoration and maintenance of a membrane permeability barrier in transformed mammalian cells. J Cell Physiol 101:481–492

    Google Scholar 

  • Morawetz RB, Crowell RH, DeGirolami U, Marcoux FW, Jones TH, Halsey JH (1979) Regional cerebral blood flow thresholds during cerebral ischemia. Fed Proc 38:2493–2494

    Google Scholar 

  • Mutsuga N, Schuette WH, Lewis DV (1976) The contribution of local blood flow to the rapid clearance of potassium from the cortical extracellular space. Brain Res 116:431–436

    Google Scholar 

  • Reivich M, Brann AW Jr, Shapiro HM, Myers RE (1972) Regional cerebral blood flow during prolonged partial asphyxia. In: Meyers JS, Reivich M, Lechner H, Erchhorn O (eds) Research on the cerebral circulation. The Vth Salzburg Conference. Thomas Publisher, Springfield, Illinois, p 217

    Google Scholar 

  • Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo[14C]antipyrine. Am J Physiol 234:H59-H66

    Google Scholar 

  • Siemkowicz E (1980) Cerebrovascular resistance in ischemia. Pflügers Arch 388:243–247

    Google Scholar 

  • Siemkowicz E, Gjedde A (1980) Post-ischemic coma in rat: Effect of different pre-ischemic blood glucose levels on cerebral metabolic recovery after ischemia. Acta Physiol Scand 110:225–232

    Google Scholar 

  • Siemkowicz E, Hansen AJ (1978) Clinical restitution following cerebral ischemia in hypo-, normo-, and hyperglycemic rats. Acta Neurol Scand 58:1–8

    Google Scholar 

  • Steen PA, Milde JH, Michenfelder JD (1978) Cerebral metabolic and vascular effects of barbiturate therapy following complete global ischemia. J Neurochem 31:1317–1324

    Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand (Suppl), 367:1–48

    Google Scholar 

  • Vern BA, Schuette WH, Mutsuga N, Whitehouse WC (1979) Effects of ischemia on the removal of extracellular potassium in cat cortex during pentylenetetrazol seizures. Epilepsia 20:711–724

    Google Scholar 

  • Vyskočil F, Kříž N, Bureš J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259

    Google Scholar 

  • Wade JG, Amtorp O, Sørensen SC (1975) The “low-flow” state in cerebral ischemia. Arch Neurol 32:381–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, A.J., Gjedde, A. & Siemkowicz, E. Extracellular potassium and blood flow in the post-ischemic rat brain. Pflugers Arch. 389, 1–7 (1980). https://doi.org/10.1007/BF00587921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587921

Key words

Navigation