Skip to main content
Log in

Effects of 4-aminopyridine on inward rectifying and pacemaker currents of cardiac purkinje fibres

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

  1. 1.

    4-Aminopyridine (4-AP), in a concentration of 1–5mM, prolongs the action potential duration, induces spontaneous activity and depolarizes sheep cardiac Purkinje strands. These effects are different from those obtained with 0.1mM and are reversible.

  2. 2.

    Voltage clamp experiments demonstrate that the higher drug concentrations affect membrane currents measured in the potential range between-100 and-40mV, in addition to the reduction of the transient outward current already described for small amounts of the drug (0.1–0.5mM).

  3. 3.

    The analysis of membrane current modifications by 4-AP in the presence of cesium and barium ions indicates that 4-AP, in the higher concentration range, reduces the inward rectifying time independent potassium currenti K1 and modifies the voltage dependence of the time and voltage dependent pacemaker current. The steady-state activation curve of the pacemaker, current is shifted towards less negative potentials and is less steeply voltage dependent. The time constant (τ) curve has an increased maximum, displaced towards less negative potentials.

  4. 4.

    The modifications by 4-AP of thei K1 and pacemaker currents explain the changes in resting potential, action potential duration and the induction of spontaneous activity. The latter effect is not the result of an indirect effect of 4-AP through increased release of neurotransmitters from sympathetic nerve endings. A possible action of 4-AP at the inside of the membrane, explaining the multiple actions, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attwell D, Cohen I, Eisner D, Ohba M, Ojeda C (1979) The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflügers Arch 379:137–142

    Google Scholar 

  2. Attwell D, Eisner D, Cohen I (1979) Voltage clamp and tracer flux data: effects of a restricted extracellular space. Q Rev Biophys 12:213–261

    Google Scholar 

  3. Baumgarten CM, Isenberg G (1977) Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibres during voltage clamp hyperpolarization and depolarization. Pflügers Arch 369:19–31

    Google Scholar 

  4. Brown RH Jr, Noble D (1978) Displacement of activation thresholds in cardiac muscle by protons and calcium ions. J Physiol (Lond) 282:333–343

    Google Scholar 

  5. Brown HF, Clark A, Noble SJ (1976a) Identification of the pacemaker current in frog atrium. J Physiol (Lond) 258:521–545

    Google Scholar 

  6. Brown HF, Clark A, Noble SJ (1976b) Analysis of pacemaker and repolarization currents in frog atrial muscle. J Physiol (Lond) 258:547–577

    Google Scholar 

  7. Brown HF, Di Francesco D, Noble D, Noble SJ (1980) The contribution of potassium accumulation to outward currents in frog atrium. J Physiol (Lond) 306:127–149

    Google Scholar 

  8. Carmeliet EE (1961) Chloride and potassium permeability in cardiac Purkinje fibres. Presses Académiques Européennes, S. C. Bruxelles

    Google Scholar 

  9. Carmeliet EE (1980) Decrease of K efflux and influx by external Cs ions in cardiac Purkinje and muscle cells. Pflügers Arch 383:143–150

    Google Scholar 

  10. Carmeliet EE, Vereecke J (1979) Electrogenesis of the action potential and automaticity. In: Berne RM (ed) Handbook of physiology. The cardiovascular system. I. American Physiological Society. Baltimore, pp 269–334

    Google Scholar 

  11. Cohen I, Noble D, Ohba M, Ojeda C (1979) Action of salicylate ions on the electrical properties of sheep cardiac Purkinje fibres. J Physiol (Lond) 297:163–185

    Google Scholar 

  12. Deitmer JW, Ellis D (1980) The intracellular sodium activity of sheep heart Purkinje fibres: effects of local anaesthetics and tetrodotoxin. J Physiol (Lond) 300:269–282

    Google Scholar 

  13. Di Francesco D (1981a) A new interpretation of the pacemaker current in calf Purkinje fibres. J Physiol (Lond) 314:359–376

    Google Scholar 

  14. Di Francesco D (1981b) A study of the ionic nature of the pacemaker current in calf Purkinje fibres. J Physiol (Lond) 314:377–393

    Google Scholar 

  15. Di Francesco D, McNaughton PA (1979) The effects of calcium on outward membrane currents in the cardiac Purkinje fibre. J Physiol (Lond) 289:347–373

    Google Scholar 

  16. Dudel J, Peper K, Rudel R, Trautwein W (1967) The potassium component of membrane current in Purkinje fibres. Pflügers Arch 296:308–327

    Google Scholar 

  17. Eisner DA, Lederer WJ (1979) The role of the sodium pump in the effects of potassium-depleted solution on mammalian cardiac muscle. J Physiol (Lond) 294:279–301

    Google Scholar 

  18. Fink R, Wettwer E (1978) Modified K-channel gating by exhaustion and the block by internally applied TEA and 4-AP in muscle. Pflügers Arch 374:289–292

    Google Scholar 

  19. Freeman SE (1979) Cholinergic mechanisms in the heart: interactions with 4-AP. J Pharmacol Exp Ther 210:7–14

    Google Scholar 

  20. Gillespie JE (1977) Voltage dependent blockage, of the delayed potassium current in skeletal muscle by 4-AP. J Physiol (Lond) 273:64–65P

    Google Scholar 

  21. Gillespie JI, Hutter OF (1975) The actions of 4-AP on the delayed potassium current in skeletal muscle fibres. J Physiol (Lond) 252:70–71P

    Google Scholar 

  22. Guerrero S, Novakovic L (1980) Effects of 4-aminopyridine on pacemaker activity of frog sinus venousus. Eur J Pharmacol 62:335–340

    Google Scholar 

  23. Hall AE, Hutter OF, Noble D (1963) Current-voltage relations of Purkinje fibres in sodium-deficient solutions. J Physiol (Lond) 166:225–240

    Google Scholar 

  24. Hart G, Noble D, Shimoni Y (1980) Adrenaline shifts the voltage dependence of the Na and K components of the if in sheep Purkinje fibres. J Physiol (Lond) 308:34P

    Google Scholar 

  25. Hauswirth O, Noble D, Tsien RW (1968) Adrenaline. Mechanism of action on the pacemaker potential in cardiac Purkinje fibres. Science 162:916–917

    Google Scholar 

  26. Isenberg G (1976) Cardiac Purkinje fibres. Cesium as a tool to block inward rectivying potassium currents. Plfügers Arch 365:99–106

    Google Scholar 

  27. Isenberg G (1978) The positive dynamic current of the cardiac Purkinje fibre is not a chloride but a potassium current. Pflügers Arch 377 (Suppl)R5

    Google Scholar 

  28. Isenberg G (1979) Risk and advantages of using strongly bevelled microelectrodes for electrophysiological studies in cardiac Purkinje fibres. Pflügers Arch 380:91–98

    Google Scholar 

  29. Isenberg G, Trautwein W (1974) The effects of dihydro-ouabaine and lithium ions on the outward current in cardiac Purkinje fibres. Pflügers Arch 350:41–54

    Google Scholar 

  30. Jaeger DM, Gibbons WR (1981) The effects of 4-AP on the late outward plateau currents in cardiac Purkinje fibres. Biophys J 33:72a

    Google Scholar 

  31. Kanaya S, Katzung BG (1980) Effects of 4-AP on depolarization induced automaticity in ventricular, myocardium. Proc West Pharmacol Soc 23:263–267

    Google Scholar 

  32. Kenyon JL, Gibbons WR (1979) 4-AP and the early outward current of sheep cardiac Purkinje fibres. J Gen Physiol 73:139–157

    Google Scholar 

  33. Lemeignan M, Auclair MC, Rodallec A, Lechat P (1975) Analyse electrophysiologique des effets de l'amino-4-pyridine sur le lambeau ventriculaire isolé du cœur de cobaye,. Arch Int Pharmacol 216:165–176

    Google Scholar 

  34. McAllister RE, Noble D, Tsien RW (1975) Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol (Lond) 251:1–59

    Google Scholar 

  35. Meves H, Pichon Y (1977) The effect of internal and external 4-AP on the potassium currents in intracellularly perfused squid giant axons. J Physiol (Lond) 268:511–532

    Google Scholar 

  36. Molgo J (1978) Voltage-clamp analysis of the sodium and potassium currents in skeletal muscle fibres treated with 4-aminopyridine. Experientia 34:1275–1277

    Google Scholar 

  37. Noble D (1965) Electrical properties of cardiac muscle attributable to inward going (anomalous) rectification. J Cell Comp Physiol 66:127–136

    Google Scholar 

  38. Noble D (1975) The initiation of the heartbeat. Clarendon Press, Oxford

    Google Scholar 

  39. Noble SJ (1976) Potassium accumulation and depletion in frog atrial muscle. J Physiol (Lond) 258:579–613

    Google Scholar 

  40. Noble D, Tsien RW (1968) The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol (Lond) 195:185–214

    Google Scholar 

  41. Pelhate H, Pichon Y (1974) Selective inhibition of potassium current in the giant axon of the cockroach. J Physiol (Lond) 242:90–91

    Google Scholar 

  42. Schauf SC, Colton JS, Davis FA (1976) Aminopyridines and sparteine as inhibitors of membrane potassium conductance. Effects on myxicola giant axons and the lobster neuromuscular junction. J Pharmacol Exp Ther 197:414–425

    Google Scholar 

  43. Snyders DJ, van Bogaert PP (1978) Modification, of cardiac pacemaker current by 4-aminopyridine. Arch Int Physiol Biochem 86:190–191

    Google Scholar 

  44. Thompson SH (1977) Three pharmacologically distinct potassium channels in molluscan neurones. J Physiol (Lond) 265:465–488

    Google Scholar 

  45. Tsien RW (1974a) Effects of epinephrine, on the pacemaker potassium current of cardiac Purkinje fibres. J Gen Physiol 64:293–319

    Google Scholar 

  46. Tsien RW (1974b) Mode of action of chronotropic agents in cardiac Purkinje fibres. J Gen Physiol 64:320–342

    Google Scholar 

  47. Ulbricht W, Wagner HH (1976) Block of potassium channels of the nodal membrane by 4-aminopyridine and its partial removal on depolarization. Pflügers Arch 367:77–87

    Google Scholar 

  48. Van Bogaert, PP (1981) Shifts in pacemaker current voltage dependence during intracellular pH transients. Arch Int Physiol Biochem 89:24–25

    Google Scholar 

  49. Van Bogaert PP, Snyders DJ (1978) Dose-dependent effects of 4-AP on the electrical activity of cardiac Purkinje fibres. Pflügers Arch 373 (Suppl):R13

    Google Scholar 

  50. Van Bogaert PP, Vereecke JS, Carmeliet EE (1978) The effect of raised pH on pacemaker activity and ionic currents in cardiac Purkinje fibres. Pflügers Arch 375:45–52

    Google Scholar 

  51. Vassalle M (1965) Cardiac pacemaker potentials at different extra and intracellular K concentrations. Am J Physiol 208:770–775

    Google Scholar 

  52. Vereecke JS, Isenberg G, Carmeliet EE (1980) K-efflux through inward rectifying K channels in voltage clamped Purkinje fibres. Pflügers Arch 384:207–217

    Google Scholar 

  53. Woods TW, Urthaler F, James TN (1978) Chronotropic effects of tetraethylammonium and 4-aminopyridine in canine sinus node pacemaker cells. Circulation 57 and 58 (Suppl II):46

    Google Scholar 

  54. Yanagisawa I, Taira N (1979) Positive inotropic effect of 4-aminopyridine on dog ventricular muscle. Naunyn-Schmiedeberg's Arch Pharmacol 307:207–212

    Google Scholar 

  55. Yeh JZ, Oxford GS, Wu CH, Narahashi T (1976) Dynamics of aminopyridine block of potassium channels in squid axon membranes. J Gen Physiol 68:519–535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Bogaert, P.P., Snyders, D.J. Effects of 4-aminopyridine on inward rectifying and pacemaker currents of cardiac purkinje fibres. Pflugers Arch. 394, 230–238 (1982). https://doi.org/10.1007/BF00589097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00589097

Key words

Navigation