Skip to main content
Log in

Neuroprotective actions of glucocorticoid and nonglucocorticoid steroids in acute neuronal injury

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The glucocorticoid steroid methylprednisolone (MP) has been shown to enhance chronic recovery after human spinal cord injury when administered in a 24-hr high-dose regimen beginning within 8 hr. The doses of MP that affect this improved recovery have been demonstrated to inhibit posttraumatic spinal cord lipid peroxidation (LP), which has been postulated to be a key event in the secondary injury-induced degenerative cascade.

  2. 2.

    The molecular mechanism of action of the steroid appears to involve intercalation into the cell membrane and blockade of the propagation of peroxidative reactions. At a physiological level, the inhibition of injury-induced LP has been found to result in an attenuation of progressive posttraumatic ischemia and energy failure together with an augmented reversal of intracellular calcium accumulation. However, MP also acts directly to retard secondary neuronal degeneration as observed in studies showing the steroid's ability to slow the anterograde degeneration of experimentally injured cat soleus motor nerves.

  3. 3.

    The duplication of this effect by the nonsteroidal lipid antioxidantα-tocopherol supports the notion that is indeed a manifestation of the inhibition of posttraumatic LP. Moreover, the efficacy of MP in limiting lipid peroxidation and secondary spinal cord or motor nerve degeneration has also been duplicated by a nonglucocorticoid 21-aminosteroid tirilazad mesylate (U-74006F), which suggests the independence of the antioxidant and glucocorticoid effects of MP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, D. K., Means, E. D., Waters, T. R., and Green, E. S. (1982). Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment.J. Neurosurg. 56106–113.

    Google Scholar 

  • Anderson, D. K., Saunders, R. D., Demediuk, P., Dugan, L. L., Braughler, J. M., Hall, E. D., Means, E. D., and Horrocks, L. A. (1985). Lipid hydrolysis and peroxidation in injured spinal cord: Partial protection with methylprednisolone or vitamin E and selenium.CNS Trauma 2257–267.

    Google Scholar 

  • Anderson, D. K., Braughler, J. M., Hall, E. D., Waters, T. R., McCall, J. M., and Means, E. D. (1988). Effects of treatment with U-74006F on neurological recovery following experimental spinal cord injury.J. Neurosurg. 69562–567.

    Google Scholar 

  • Anderson, D. K., Hall, E. D., Braughler, J. M., McCall, J. M., and Means, E. D. (1991). Effect of delayed administration of U-74006F (tirilazad mesylate) on recovery of locomotor function following experimental spinal cord injury.J. Neurotrauma 8187–192.

    Google Scholar 

  • Audus, K. L., Guillot, F. L., and Braughler, J. M. (1991). Evidence for 21-aminosteroid association with the hydrophobic domains of brain microvessel endothelial cells.Free Rad. Biol. Med. 11361–371.

    Google Scholar 

  • Behrmann, D. L., Bresnahan, J. C., and Beattie, M. S. (1992). Effect of methylprednisolone after spinal cord contusion in the rat.J. Neurotrauma 956.

    Google Scholar 

  • Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., Eisenberg, H. M., Flamm, E. S., Leo-Summers, L., Maroon, J., Marshall, L. F., Perot, P. L., Piepmeier, J., Sonntag, V. K. H., Wagner, F. C., Wilberger, J. E., and Winn, H. R. (1990). A randomized controlled trial of methylprednisolone or naxolone in the treatment of acute spinal cord injury.N. Engl. J. Med. 3221405–1411.

    Google Scholar 

  • Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Baskin, D. S., Eisenberg, H. M., Flamm, E. S., Leo-Summers, L., Marshall, L. F., Perot, P. L., Piepmeier, J., Sonntag, V. K. H., Wagner, F. C., Wilberger, J. E., Winn, H. R., and Young, W. (1992). Methylprednisolone or naloxone treatment after acute spinal cord injury: 1 year follow-up data: Results of the second National Acute Spinal Cord Injury Study.J. Neurosurg. 7623–31.

    Google Scholar 

  • Braughler, J. M. (1985). Lipid peroxidation-induced inhibition ofγ-aminobutyric acid uptake in rat brain synaptosomes: Protection by glucocorticoids.J. Neurochem. 441282–1288.

    Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1983a). Lactate and pyruvate metabolism in injured cat spinal cord before and after a single large intravenous dose of methylprednisolone.J. Neurosurg. 59256–261.

    Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1983b). Uptake and elimination of methylprednisolone from contused spinal cord following intravenous injection of the sodium succinate ester.J. Neurosurg. 58538–542.

    Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1984). Effects of multidose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism.J. Neurosurg. 61290–295.

    Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1989). Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation.Free Rad. Biol. Med. 6289–301.

    Google Scholar 

  • Braughler, J. M., and Pregenzer, J. F. (1989). The 21-aminosteroid inhibitors of lipid peroxidation: Reactions with lipid peroxyl and phenoxyl radicals.Free Rad. Biol. Med. 7125–130.

    Google Scholar 

  • Braughler, J. M., Hall, E. D., Means, E. D., and Anderson, D. K. (1987a). Evaluation of an intensive methylprednisolone sodium succinate dosing regimen in experimental spinal cord injury.J. Neurosurg. 67102–105.

    Google Scholar 

  • Braughler, J. M., Pregenzer, J. F., Chase, R. L., Jacobsen, E. J., and McCall, J. M. (1987b). Novel 21-aminosteroids as potent inhibitors of iron-dependent lipid peroxidation.J. Biol. Chem. 26210438–10440.

    Google Scholar 

  • Braughler, J. M., Hall, E. D., Jacobsen, E. J., McCall, J. M., and Means, E. D. (1989). The 21-aminosteroids: Potent inhibitors of lipid peroxidation for the treatment of central nervous system trauma and ischemia.Drugs Future 14143–152.

    Google Scholar 

  • Demopoulos, H. B., Flamm, E. S., Pietronigro, D. D., and Seligman, M. L. (1980). The free radical pathology and the microcirculation in the major central nervous system disorders.Acta Physiol. Scand. (Suppl)49291–119.

    Google Scholar 

  • Demopoulos, H. B., Flamm, E. S., Seligman, M. L., Pietronigro, D. D., Tomasula, J., and DeCrescito, V. (1982). Further studies on free radical pathology in the major central nervous system disorders: Effects of very high doses of methylprednisolone on the functional outcome, morphology, and chemistry of experimental spinal cord impact injury.Can. J. Physiol. Pharmacol. 601415–1424.

    Google Scholar 

  • Dimlich, R. V. W., Tornheim, P. A., Kindel, R. M., Hall, E. D., Braughler, J. M., and McCall, J. M. (1990). Effects of a 21-aminosteroid (U-74006F) on cerebral metabolites and edema after severe experimental head trauma. InAdvances in Neurology, Vol. 52 (D. Long, Ed.), Raven press, New York, pp. 365–375.

    Google Scholar 

  • Drakontides, A. B. (1978). The effect of glucocorticoid treatment on denervated rat hemidiphragm.Brain Res. 239175–189.

    Google Scholar 

  • Giannotta, S. L., Weiss, M. H., Apuzzo, M. L. J., and Martin, E. (1984). High dose glucocorticoids in the management of severe head injury.Neurosurgery 15497–501.

    Google Scholar 

  • Green, B. A., Kahn, T., and Klose, K. J. (1980). A comparative study of steroid therapy in acute experimental spinal cord injury.Surg. Neurol. 1391–97.

    Google Scholar 

  • Greenwood, J. (1991). Mechanisms of blood-brain barrier breakdown.Neuroradiology 3395–100.

    Google Scholar 

  • Hall, E. D. (1982). Glucocorticoid effects on central nervous excitability and synaptic transmission.Int. Rev. Neurobiol. 23165–195.

    Google Scholar 

  • Hall, E. D. (1985). High-dose glucocorticoid treatment improves neurological recovery in head-injured mice.J. Neurosurg. 62882–887.

    Google Scholar 

  • Hall, E. D. (1987). Intensive antioxidant pretreatment retards motor nerve degeneration.Brain Res. 413175–178.

    Google Scholar 

  • Hall, E. D. (1988). Effects of the 21-aminosteroid U-74006F on posttraumatic spinal cord ischemia.J. Neurosurg. 68462–465.

    Google Scholar 

  • Hall, E. D., and Braughler, J. M. (1981). Acute effects of intravenous glucocorticoid pretreatment on thein vitro peroxidation of cat spinal cord tissue.Exp. Neurol. 73321–324.

    Google Scholar 

  • Hall, E. D., and Braughler, J. M. (1982). Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and (Na+, K+)-ATPase activity. Dose-response analysis during 1st hour after contusion injury in the cat.J. Neurosurg. 49563–568.

    Google Scholar 

  • Hall, E. D., and Travis, M. A. (1988). Inhibition of arachidonic acid-induced vasogenic brain edema by the non-glucocorticoid 21-aminosteroid U-74006F.Brain Res. 451350–352.

    Google Scholar 

  • Hall, E. D., and Wolf, D. L. (1984). Methylprednisolone preservation of motor nerve function during early degeneration.Exp. Neurol. 84715–720.

    Google Scholar 

  • Hall, E. D., and Wolf, D. L. (1986). A pharmacological analysis of the pathophysiological mechanisms of post-traumatic spinal cord ischemia.J. Neurosurg. 64951–961.

    Google Scholar 

  • Hall, E. D., and Yonkers, P. A. (1990). Preservation of motor nerve function during early degeneration by the 21-aminosteroid antioxidant U-74006F.Brain Res. 513244–247.

    Google Scholar 

  • Hall, E. D., Baker, T., and Riker, W. F. (1977). Glucocorticoid preservation of motor nerve function during early degeneration.Ann. Neurol. 1273–270.

    Google Scholar 

  • Hall, E. D., Riker, W. P., and Baker, T. (1983). Beneficial action of glucocorticoid treatment on neuromuscular transmission during early motor nerve degeneration.Exp. Neurol. 79488–496.

    Google Scholar 

  • Hall, E. D., Wolf, D. L., and Braughler, J. M. (1984). Effects of a single large dose of methylprednisolone sodium succinate on experimental posttraumatic spinal cord ischemia.J. Neurosurg. 61124–130.

    Google Scholar 

  • Hall, E. D., McCall, J. M., Yonkers, P. A., Chase, R. L., and Braughler, J. M. (1987). A nonglucocorticoid analog of methylprednisolone duplicates its high dose pharmacology in models of CNS trauma and neuronal membrane damage.J. Pharmacol. Exp. Ther. 242137–142.

    Google Scholar 

  • Hall, E. D., McCall, J. M., and Braughler, J. M. (1988a). New pharmacological treatments for spinal cord trauma.J. Neurotrauma 581–89.

    Google Scholar 

  • Hall, E. D., Yonkers, P. A., McCall, J. M., and Braughler, J. M. (1988b). Effect of the 21-aminosteroid U-74006F on experimental head injury in mice.J. Neurosurg. 68456–461.

    Google Scholar 

  • Hall, E. D., Yonkers, P. A., Horan, K. L., and Braughler, J. M. (1989). Correlation between attenuation of posttraumatic spinal cord ischemia and preservation of vitamin E by the 21-aminosteroid U-74006F: evidence for anin vivo antioxidant action.J. Neurotrauma 6169–176.

    Google Scholar 

  • Hall, E. D., Braughler, J. M., Yonkers, P. A., Smith, S. L., Linseman, K. L., Means, E. D., Scherch, H. M., Von Voigtlander, P. F., Lahti, R. A., and Jacobsen, E. J. (1991). U-78517F: A potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia.J. Pharmacol. Exp. Ther. 258688–694.

    Google Scholar 

  • Hall, E. D., Yonkers, P. A., Andrus, P. K., Cox, J. W., and Anderson, D. K. (1992). Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury.J. Neurotrauma 9 (Suppl. 2):S425-S442.

    Google Scholar 

  • Hall, E. D., Andrus, P. K., and Yonkers, P. A. (1993). Brain hydroxyl radical generation in acute experimental head injury.J. Neurochem. 60588–594.

    Google Scholar 

  • Hoerlein, B. F., Redding, R. W., Hoff, E. J., and McGuire, J. A. (1984). Evaluation of naxolone, crocetin, thyrotropin releasing hormone, methylprednisolone, partial myelotomy, and hemilaminectomy in the treatment of acute spinal cord trauma.J. Am. Anim. Hosp. Assoc. 2167–77.

    Google Scholar 

  • Holtz, A., Nystrom, B., and Gerdin, B. (1990). Effect of methylprednisolone on motor function and spinal cord blood flow after spinal cord compression in rats.Acta Neurol. Scand. 8268–73.

    Google Scholar 

  • Iuzuka, H., Iwasaki, Y., and Yamamoto, T. (1986). Morphometric assessment of drug effects in experimental spinal cord injury.J. Neurosurg. 6592–98.

    Google Scholar 

  • McIntosh, T. K., Thomas, M., Smith, D., and Banbury, M. (1992). The novel 21-aminosteroid U-74006F attenuates cerebral edema and improves survival after head injury in the rat.J. Neurotrauma 933–46.

    Google Scholar 

  • Monyer, H., Hartley, D. M., and Choi, D. W. (1990). 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures.Neuron 5121–126.

    Google Scholar 

  • Okamoto, M., and Riker, W. F. (1969). Motor nerve terminals as the initial site of functional changes after denervation.J. Gen. Physiol. 5370–80.

    Google Scholar 

  • Sapolsky, R. M. (1990). Glucocorticoids, hippocampal damage and the glutamatergic synapse.Prog. Brain Res. 8613–25.

    Google Scholar 

  • Sapolsky, R. M., and Pulsinelli, W. A. (1985). Glucocorticoids potentiate ischemic injury to neurons: Therapeutic implications.Science 2291397–1399.

    Google Scholar 

  • Sapolsky, R. M., Krey, L. C., and McEwen, B. S. (1985). Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging.J. Neurosci. 51221–1227.

    Google Scholar 

  • Shapira, Y., Artru, A. A., Yadid, G., and Shohami, E. (1992). Methylprednisolone does not decrease eicosanoid concentrations or edema in brain tissue or improve neurologic outcome after heat trauma in rats.Anesth. Analg. 75238–244.

    Google Scholar 

  • Spiller, C. R., Glicini, R. L., Tortella, B. J., and Lazaro, E. J. (1990). Effect of steroid therapy in experimental head trauma.Brain Injury 4199–201.

    Google Scholar 

  • Young, W., and Flamm, E. S. (1982). Effects of high dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury.J. Neurosurg. 57667–673.

    Google Scholar 

  • Young, W., DeCrescito, V., Flamm, E. S., Blight, A. R., and Gruner, J. A. (1988). Pharmacological therapy of acute spinal cord injury: Studies with high dose methylprednisolone and naloxone.Clin. Neurosurg. 34675–697.

    Google Scholar 

  • Zuccarello, M., and Anderson, D. K. (1989). Protective effect of a 21-aminosteroid on the blood-brain barrier following subarachnoid hemorrhage in rats.Stroke 20367–371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, E.D. Neuroprotective actions of glucocorticoid and nonglucocorticoid steroids in acute neuronal injury. Cell Mol Neurobiol 13, 415–432 (1993). https://doi.org/10.1007/BF00711581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711581

Key words

Navigation