Skip to main content
Log in

The release of3H-noradrenaline by p- and m-tyramines and -octopamines, and the effect of deuterium substitution in α-position

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The3H-noradrenaline-releasing effects of p- and m-tyramines and -octopamines, either deuterated or not, were studied in isolated vasa deferentia of the rat (COMT inhibited and calcium-free solution in all experiments).

K m, for uptake1 was higher for octopamines than for tyramines, but not increased by the introduction of deuterium in α-position, except for (probably contaminated) deuterated p-octopamine. Other tissues were preloaded with3H-noradrenaline. After inhibition of vesicular uptake and MAO equi-releasing concentrations of the eight amines were strictly correlated withK m, they were 6 to 7 times higher for unsubstituted octopamines than for corresponding tyramines. When only MAO (but not vesicular uptake) was inhibited, this difference decreased to about 4-fold, but the releasing potency of the deuterated amines (relative to their parent amines) remained unchanged (except for p-octopamine). When vesicular uptake and MAO were intact, unsubstituted octopamines were only 1.5 to 2.2 times less potent than the corresponding tyramines. Analysis of the efflux of3H-DOPEG confirmed that this gain in the relative potencies of octopamines is due to their increased ability to mobilize vesicular 3H-noradrenaline; moreover, deuterated amines as well were then better mobilizers than were their parent amines.

It is concluded that, provided vesicular uptake is intact, the introduction of a \-OH-group enhances the ability of indirectly acting sympathomimetic amines to mobilize vesicular noradrenaline; the introduction of deuterium in α-position, on the other hand, enhances this mobilizing effect exclusively when MAO is intact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

COMT:

catechol-O-methyl transferase

DOMA:

dihydroxymandelic acid

DOPEG:

dihydroxyphenylglycol

MAO:

monoamine oxidase

OM-fraction:

column chromatographic fraction containingall O-methylated metabolites

References

  • Belleau B, Moran J (1963) Deuterium isotope effects in relation to the chemical mechanisms of monoamine oxidase. Ann NY Acad Sci 107:822–839

    Google Scholar 

  • Belleau B, Burba J, Pindell M, Reiffenstein J (1961) Effect of deuterium substitution in sympathomimetic amines on adrenergic responses. Science 133:102–104

    Google Scholar 

  • Bönisch H, Trendelenburg U (1987) Veratridine-induced outward transport of3H-noradrenaline from adrenergic nerves of the rat vas deferens. Naunyn-Schmiedeberg's Arch Pharmacol 336:621–630

    Google Scholar 

  • Bönisch H, Trendelenburg U (1988) The mechanism of action of indirectly acting sympathomimetic amines. In: Trendelenburg U, Weiner N (eds) Catecholamines. I. Handbook Exp Pharmacol, vol 90/1. Springer, Berlin Heidelberg New York Tokyo, pp 247–277

    Google Scholar 

  • Celuch SM, Juorio AV (1987) Effects of deuterium substitution on the chronotropic responses to some sympathomimetic amines in the isolated rat atria. Naunyn-Schmiedeberg's Arch Pharmacol 336:391–395

    Google Scholar 

  • Dyck LE, Durden DA, Boulton AA (1986) Effects of deuterium substitution on the catabolism of \-phenylethylamine: an in vivo study. J Neurochem 46:399–404

    Google Scholar 

  • Graefe K-H, Stefano FJE, Langer SZ (1973) Preferential metabolism of3H-(−)-norepinephrine through the deaminated glycol in the rat vas deferens. Biochem Pharmacol 22:1147–1160

    Google Scholar 

  • Grohmann M, Trendelenburg U (1983) The isotope effect of tritium in 3H-(−)-adrenaline with very high specific activity. NaunynSchmiedeberg's Arch Pharmacol 324:233–234

    Google Scholar 

  • Grohmann M, Trendelenburg U (1984) The substrate specificity of uptake2 in the rat heart. Naunyn-Schmiedeberg's Arch Pharmacol 328: 164–173

    Google Scholar 

  • Grohmann M, Henseling M, Cassis L, Trendelenburg U (1986) Errors introduced by a tritium label in position 8 of catecholamines. Naunyn-Schmiedeberg's Arch Pharmacol 332: 34–42

    Google Scholar 

  • Iversen LL (1967) The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Langeloh A, Trendelenburg U (1987) The mechanism of the3H-noradrenaline releasing effect of various substrates of uptake1 role of monoamine oxidase and of vesicularly stored3H-noradrenaline. Naunyn-Schmiedeberg's Arch Pharmacol 336: 611–620

    Google Scholar 

  • Langeloh A, Bönisch H, Trendelenburg U (1987) The mechanism of the3H-noradrenaline releasing effect of various substrates of uptake1: multifactorial induction of outward transport. Naunyn-Schmiedeberg's Arch Pharmacol 336:602–610

    Google Scholar 

  • Michalke W, Langer R, Burger A (1987) Mobilization of biogenic amines from chromaffin-granule ghosts by indirectly acting sympathomimetic amines. Naunyn-Schmiedeberg's Arch Pharmacol 335:R81

    Google Scholar 

  • Parker EM, Cubeddu LX (1986) Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. II. Release in the presence of vesicular transmitter stores. J Pharmacol Exp Ther 237:193–203

    Google Scholar 

  • Parker EM, Cubeddu LX (1988) Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding. J Pharmacol Exp Ther 245:199–210

    Google Scholar 

  • Schömig E, Trendelenburg U (1987) Simulation of outward transport of neuronal3H-noradrenaline with the help of a two-compartment model. Naunyn-Schmiedeberg's Arch Pharmacol 336:631–640

    Google Scholar 

  • Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University Press, USA

    Google Scholar 

  • Stute N, Trendelenburg U (1984) The outward transport of axoplasmic noradrenaline induced by a rise of the sodium concentration in the adrenergic nerve endings of the rat vas deferens. Naunyn-Schmiedeberg's Arch Pharmacol 327:124–132

    Google Scholar 

  • Trendelenburg U, Stefano FJE, Grohmann M (1983) The isotope effect of tritium in3H-noradrenaline. Naunyn-Schmiedeberg's Arch Pharmacol 323:128–140

    Google Scholar 

  • Yu PH, Barclay S, Davis BA, Boulton AA (1981) Deuterium isotope effects on the enzymatic oxidative deamination of trace amines. Biochem Pharmacol 30:3089–3094

    Google Scholar 

  • Yu PH, Kazakoff C, Davis BA, Boulton AA (1982) Deuterium isotope effect on the enzymatic oxidation of dopamine and serotonin. Biochem Pharmacol 31:3697–3698

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft (SFB 176)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönfeld, C.L., Trendelenburg, U. The release of3H-noradrenaline by p- and m-tyramines and -octopamines, and the effect of deuterium substitution in α-position. Naunyn-Schmiedeberg's Arch. Pharmacol. 339, 433–440 (1989). https://doi.org/10.1007/BF00736058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00736058

Key words

Navigation