Skip to main content
Log in

Propranolol-induced inhibition of rat brain cytoplasmic phosphatidate phosphohydrolase

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Propranolol, a cationic amphiphilic drug, caused enhanced incorporation of labeled precursor into phosphatidic acid and its metabolites in rat cerebral cortex mince, suggesting increased biosynthesis or reduced degradation. Inhibition of phosphatidate phosphohydrolase could explain the observed drug-induced accumulation of phosphatidic acid and other acidic lipids. Propranolol exhibited differential effects on the free and membrane-bound forms of phosphatidate phosphohydrolase. The drug inhibited cytoplasmic enzyme in a dose-dependent manner only when membrane-bound substrate was used but had practically no effect on the membrane-bound enzyme irrespective of the nature of the substrate used or on the cytoplasmic enzyme when free substrate was used. Brain cytoplasmic enzyme obtained from rats sacrificed 30 min after intraperitoneal injections of propranolol did not show any inhibition. Propranolol bound to membranes may prevent cytoplasmic enzyme action, probably by decreasing the availability of substrate through the formation of stable lipid-drug-protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eichberg, J., Shein, H. M., Schwartz, M., andHauser, G. 1973. Stimulation of32Pi incorporation into phosphatidylinositol and phosphatidylglycerol by catecholamines and β-adrenergic receptor blocking agents in rat pineal organ cultures. J. Biol. Chem. 248:3615–3622.

    Google Scholar 

  2. Eichberg, J., Gates, J., andHauser, G. 1979. The mechanism of modification by propranolol of the metabolism of phosphatidyl-CMP (CDP-diacylglycerol) and other lipids in the rat pineal gland. Biochim. Biophys. Acta 573:90–106.

    Google Scholar 

  3. Hauser, G., andEichberg, J. 1975. Identification of cytidine diphosphate-diglyceride in the pineal gland of the rat and its accumulation in the presence of DL-propranolol. J. Biol. Chem. 250:105–112.

    Google Scholar 

  4. Abdel-Latif, A., andSmith, J. P. 1976. Effects of DL-propranolol on the synthesis of glycerolipids by rabbit iris muscle. Biochem. Pharmacol. 25:1697–1704.

    Google Scholar 

  5. Bazán, N. G., Ilincheta de Boschero, M. G., Giusto, N. M., andPascual de Bazán, H. E. 1976. De novo glycerolipid biosynthesis in the toad and cattle retina. Redirecting of the pathway by propranolol and phentolamine. Pages 139–148,in Porcellati, G., Amaducci, L., andGalli, C. (eds.), Function and Metabolism of Phospholipids in the Central and Peripheral Nervous System, Plenum Publishing Co., New York.

    Google Scholar 

  6. Pappu, A. S., andHauser, G. 1981. Alteration of phospholipid metabolism in rat cerebral cortex mince induced by cationic amphiphilic drugs. J. Neurochem. 37:1006–1014.

    Google Scholar 

  7. Pappu, A. S., andHauser, G. 1981. Changes in brain polyphosphoinositide metabolism induced by cationic amphiphilic drugs in vitro. Biochem. Pharmacol. 30:3243–3246.

    Google Scholar 

  8. Pappu, A. S., andHauser, G. 1982. Phospholipid metabolism changes in rat tissues in vitro after injections of propranolol. J. Pharmacol. Exp. Ther. 222:109–115.

    Google Scholar 

  9. Hauser, G., andPappu, A. S. 1982. Effects of propranolol and other cationic amphiphilic drugs on phospholipid metabolism. Pages 283–300,in Horrocks, L. A., Ansell, G. B., andPorcellati, G. (eds.), Phospholipids in the Nervous System, Vol. 1: Metabolism, Raven Press, New York.

    Google Scholar 

  10. Fallon, H. J., Lamb, R. G., andJamdar, S. C. 1977. Phosphatidate phosphohydrolase and the regulation of glycerolipid biosynthesis. Biochem. Soc. Trans. 5:37–40.

    Google Scholar 

  11. Brindley, D. N. 1978. Some aspects of the physiological and pharmacological control of synthesis of triacylglycerols and phospholipids. Int. J. Obesity 2:7–16.

    Google Scholar 

  12. Ravinuthala, H. R., Miller, D. C., andWeinhold, P. A. 1978. Phosphatidate phosphatase. Activity and properties in fetal and adult rat lung. Biochim. Biophys. Acta 530:347–356.

    Google Scholar 

  13. Vavrečka, M., Mitchell, M. P., andHübscher, G. 1969. The effect of starvation on the incorporation of palmitate into glycerides and phospholipids of rat liver homogenates. Biochem. J. 115:139–145.

    Google Scholar 

  14. Lamb, R. G., andFallon, H. J. 1974. An enzymatic explanation for dietary induced alterations in hepatic glycerolipid metabolism. Biochim. Biophys. Acta 348:179–188.

    Google Scholar 

  15. Brindley, D. N., Cooling, J., Burditt, S. L., Pritchard, P. H., Pawson, S., andSturton, R. G. 1979. The involvement of glucocorticoids in regulating activity of phosphatidate phosphohydrolase and the synthesis of triacylglycerols in the liver. Effects of feeding rats with glucose, sorbitol, fructose, glycerol and ethanol. Biochem. J. 180:195–199.

    Google Scholar 

  16. Brindley, D. N., andBowley, M. 1975. Drugs affecting the synthesis of glycerides and phospholipids in rat liver. The effects of clofibrate, halofenate, fenfluramine, amphetamine, cinchocaine, chlorpromazine, dimethylimipramine, mepyramine and some of their derivatives. Biochem. J. 148:461–469.

    Google Scholar 

  17. Bowley, M., Cooling, J., Burditt, S. L., andBrindley, D. N. 1977. The effects of amphiphilic cationic drugs and inorganic cations on the activity of phosphatidate phosphohydrolase. Biochem. J. 165:447–454.

    Google Scholar 

  18. Brindley, D. N., Bowley, M., Sturton, R. G., Pritchard, P. H., Burditt, S. L., andCooling, J. 1977. The control of phosphatidate metabolism by amphiphilic drugs and bivalent cations. Biochem. Soc. Trans. 5:40–43.

    Google Scholar 

  19. Sturton, R. G., andBrindley, D. N. 1977. Factors controlling the activities, of phosphatidate phosphohydrolase and phosphatidate cytidyltransferase. The effects of chlorpromazine, dimethylimipramine, cinchocaine, norfenfluramine, mepyramine and magnesium ions. Biochem. J. 162:25–32.

    Google Scholar 

  20. Ide, H., andNakazawa, Y. 1980. Effect of chlorpromazine on the cytoplasmic phosphatidate phosphohydrolase in rat liver. Biochem. Pharmacol. 29:789–793.

    Google Scholar 

  21. Sturton, R., andBrindley, D. N. 1978. Problems encountered in measuring the activity of phosphatidate phosphohydrolase. Biochem. J. 171:263–266.

    Google Scholar 

  22. Hayes, A., andCooper, R. G. 1971. Studies on the absorption, distribution and excretion of propranolol in rat, dog and monkey. J. Pharmacol. Exp. Ther. 176:302–311.

    Google Scholar 

  23. Schneck, D. W., Pritchard, J. F., andHayes, Jr., A. H. 1977. Studies on the uptake and binding of propranolol by rat tissues. J. Pharmacol. Exp. Ther. 203:621–629.

    Google Scholar 

  24. Bianchetti, G., Elghozi, J. L., Gomeni, R., Meyer, P., andMorselli, P. L. 1980. Kinetics of distribution of dl-propranolol in various organs and discrete brain areas of the rat. J. Pharmacol. Exp. Ther. 214:682–687.

    Google Scholar 

  25. Pappu, A. S., andHauser, G. 1982. Propranolol-induced inhibition of rat brain phosphatidate phosphohydrolase and other phospholipases. Fed. Proc. 41:669.

    Google Scholar 

  26. Mangiapane, E. H., Lloyd-Davies, K. A., andBrindley, D. N. 1973. A study of some enzymes of glycerolipid biosynthesis in rat liver after sub-total hepatectomy. Biochem. J. 134:103–112.

    Google Scholar 

  27. De Robertis, E., Pellegrino de Iraldi, A., Rodríguez de Lores Arnaiz, G., andSalganicoff, L. 1962. Cholinergic and noncholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J. Neurochem. 9:23–25.

    Google Scholar 

  28. Flynn, T. J., Deshmukh, D. S., andPieringer, R. A. 1977. A rapid and sensitive radiochemical assay for phosphatidic acid phosphohydrolase activities. J. Lipid Res. 18:777–780.

    Google Scholar 

  29. Bleasdale, J. E., Davis, C. S., Hajra, A. K., andAgranoff, B. W. 1978. A rapid and sensitive assay for phosphatidate phosphohydrolase. Anal. Biochem. 87:19–27.

    Google Scholar 

  30. Mitchell, M. P., Brindley, D. N., andHübscher, G. 1971. Properties of phosphatidate phosphohydrolase. Eur. J. Biochem. 18:214–220.

    Google Scholar 

  31. Lamb, R. G., andFallon, H. J. 1974. Glycerolipid formation from s-glycerol-3-phosphate by rat liver cell fractions. The role of phosphatidate phosphohydrolase. Biochim. Biophys. Acta 348:166–178.

    Google Scholar 

  32. Greenspan, M. D., andJenkins, S. A. 1982. A comparison of the activities of microsomal and soluble phosphatidate phosphohydrolase from mouse liver. Fed. Proc. 41:669.

    Google Scholar 

  33. Johnston, J. M., Rao, G. A., Lowe, P. A., andSchwarz, B. E. 1967. The nature of the stimulatory role of the supernatant fraction on triglyceride synthesis by the α-glycerophosphate pathway. Lipids 2:14–20.

    Google Scholar 

  34. Fallon, H. J., Barwick, J., Lamb, R. G., andVan Den Bosch, H. 1975. Studies of rat liver microsomal diglyceride acyl transferase and cholinephosphotransferase using microsomal-bound substrate. Effect on high fructose intake. J. Lipid Res. 16:107–115.

    Google Scholar 

  35. Faulkner, S. L., Hopkins, J. T., Boerth, R. C., Young, J. L., Jellet, L. B., Nies, A. S., Bender, H. W., andShand, D. G. 1973. Time required for complete recovery from chronic propranolol therapy. N. Engl. J. Med. 289:607–609.

    Google Scholar 

  36. Woelk, H., andPorcellati, G. 1973. Subcellular distribution and kinetic properties of rat brain phospholipases A1 and A2. Hoppe-Seyler's Z. Physiol. Chem. 354:90–100.

    Google Scholar 

  37. Seydel, J. K., andWassermann, O. 1976. NMR-studies on the molecular basis of drug induced phospholipidosis. II. Interaction between several amphiphilic drugs and phospholipids. Biochem. Pharmacol. 25:2357–2364.

    Google Scholar 

  38. Lüllmann, H., andWehling, M. 1979. The binding of drugs to different polar lipids in vitro. Biochem. Pharmacol. 28:3409–3415.

    Google Scholar 

  39. Godin, D. V., Ng, T. W., andTuchek, J. M. 1976. Studies on the interaction of propranolol with erythrocyte membranes. Biochim. Biophys. Acta 436:757–773.

    Google Scholar 

  40. Surewicz, K., Fijalkowska, I., andLeyko, W. 1981. The effect of propranolol on the osmotic fragility of red cells and liposomes and the influence of the drug on glycerol transport across the membrane of red cells. Biochem. Pharmacol. 30:839–842.

    Google Scholar 

  41. Allan, D., andMichell, R. H. 1975. Enchanced synthesis de novo of phosphatidylinositol in lymphocytes treated with cationic amphiphilic drugs. Biochem. J. 148:471–478.

    Google Scholar 

  42. Matsuzawa, Y., andHostetler, K. Y. 1980. Effects of chloroquine and 4,4′-bis(diethylaminoethoxy)α, β-diethyldiphenylethane on the incorporation of [3H]glycerol into the phospholipids of rat liver lysosomes and other subcellular fractions in vivo. Biochim. Biophys. Acta 620:592–602.

    Google Scholar 

  43. Putney, Jr., J. W. 1981. Recent hypotheses regarding the phosphatidylinositol effect. Life Sci. 29:1183–1194.

    Google Scholar 

  44. Hawthorne, J. N. andPickard, M. R. 1979. Phospholipids in synaptic function. J. Neurochem. 32:5–14.

    Google Scholar 

  45. Feldman, D. A., andWeinhold, P. A. 1977. Calcium binding properties of rat heart plasma membrane and inhibition by structural analogues of dl-propranolol. Biochem. Pharmacol. 26:2283–2289.

    Google Scholar 

  46. Noack, E., Kurzmack, M., Verjovski-Almeida, S., andInesi, G. 1978. The effect of propranolol and its analogues on Ca++ transport by sarcoplasmic reticulum vesicles. J. Pharmacol. Exp. Ther. 206:281–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappu, A.S., Hauser, G. Propranolol-induced inhibition of rat brain cytoplasmic phosphatidate phosphohydrolase. Neurochem Res 8, 1565–1575 (1983). https://doi.org/10.1007/BF00964158

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964158

Keywords

Navigation