Skip to main content
Log in

Analysis of copper in brain by the mass-spectrometric integrated-ioncurrent procedure

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Through use of the high-resolution double-focusing mass spectrometer, copper has been identified in various regions of the mouse, rat, guinea pig, rabbit, and human brain. The procedure depends on converting the copper (in ashed tissue) to its chloride salt, followed by derivatization with tetraphenylporphyrin (TPP) to yield a TPP chelate. After chromatographic separation, this chelate is assessed in the mass spectrometer by the integrated-ion-current procedure. Deuterated metal TPP chelates and the rare stable isotope65Cu were used as internal standards. Whole brain values obtained were as follows: mouse, 6.67±0.16 (mean±SEM) μg/g wet weight of tissue; rat, 1.06±0.05; guinea pig, 5.40±0.63; and rabbit, 7.52±0.76. In the rat, the cerebellum contained the highest concentration (1.25 μg/g), and the striatum the lowest (0.70 μg/g). In the human brain, the cortex (gray) and the striatum were relatively the highest copper-containing regions, with the cerebellum (white) being the lowest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pfeiffer, C. C., andIliev, V. 1972. A study of zinc deficiency and copper excess in the schizophrenias. Pages 141–165,in Pfeiffer, C. C. (ed.), International Review of Neurobiology, Supplement 1, Academic Press, New York.

    Google Scholar 

  2. Boggess, R. K., andMartin, R. B. 1975. Copper(II) chelation of dopa, epinephrine, and other catechols. J. Am. Chem. Soc. 97:3076–3081.

    Google Scholar 

  3. Rajan, K. S. 1974. Metal chelates in the storage and transport of neurotransmitter: Interactions of Cu++ with ATP and biogenic amines. J. Neurochem. 22:137–147.

    Google Scholar 

  4. Roberts, G. C. K. 1966. The formation of complexes between 5-hydroxytryptamine, adenosine triphosphate and bivalent cationsin vitro. Biochem. J. 100:30p.

    Google Scholar 

  5. Kwik, W. L., Purdy, E., andStiefel, E. I. 1974. Copper complexes of dopa control of the bonding mode. J. Am. Chem. Soc. 96:1638–1639.

    Google Scholar 

  6. Sigel, H., Becker, K., andMcCormick, D. B. 1967. Ternary complexes in solution. Influence of 2,2′-bipyridyl on the stability of 1:1 complexes of Co++, Ni++, Cu++ and Zn++ with hydrogen phosphate, adenosine 5′-monophosphate, and adenosine 5′-triphosphate. Biochim. Biophys. Acta. 148:655–664.

    Google Scholar 

  7. Sigel, H., andNaumann, C. E. 1976. Ternary complexes in solution. XXIV. Metal ion bridging of stacked purine-indole adducts. The mixed-ligand complexes of adenosine 5′-triphosphate, tryptophan and manganese(II), copper(II), or zinc(II). J. Am. Chem. Soc. 98:730–739.

    Google Scholar 

  8. Sourkes, T. L. 1972. Parkinson's disease and other disorders of the basal ganglia. Pages 565–578,in Albers, R. W., Siegel, G. J., Katzman, R., andAgranoff, B. W. (eds.), Basic Neurochemistry, Little, Brown and Company, Boston.

    Google Scholar 

  9. Pfeiffer, C. C. 1974. Observations on the therapy of the schizophrenia. J. Appl. Nutr. 26:29–36.

    Google Scholar 

  10. Marston, H. R. 1952. Cobalt, copper and molybdenum in nutrition of animals and plants. Physiol. Rev. 32:66–121.

    Google Scholar 

  11. Innes, J. R. M., andShearer, G. D. 1940. “Swayback: A demyelinating disease of lambs with affinities to Schilder's encephalitis in man. J. Comp. Pathol. Ther. 53:1–41.

    Google Scholar 

  12. Carnes, W. H. 1971. Role of copper in connective tissue metabolism. Fed. Proc. 30:995–1000.

    Google Scholar 

  13. Goldstein, M. 1966. Dopamine-β-hydroxylase: A copper enzyme. Pages 443–454,in Peisach, J., Aisen, P., andBlumberg, W. E. (eds.), The Biochemistry of Copper, Academic Press, New York.

    Google Scholar 

  14. Underwood, E. J. 1971.In Trace Elements in Human and Animal Nutrition, Academic Press, New York.

    Google Scholar 

  15. Cumings, J. N. 1948. The copper and iron content of brain and liver in the normal and in hepatolentricular degeneration. Brain 71:410–415.

    Google Scholar 

  16. Holmberg, C. G., andLaurell, C. B. 1951. Oxidase reactions in human plasma caused by ceruloplasmin. Scand. J. Clin. Lab. Invest. 3:103–107.

    Google Scholar 

  17. Angel, C., Leach, B. E., Martens, S., Cohen, M., andHeath, R. G. 1957. Serum oxidation tests in schizophrenic and normal subjects. Arch. Neurol. Psych. 78:500–504.

    Google Scholar 

  18. Chugh, T. D., Dhingra, R. K., Gulati, R. C., andBathla, J. C. 1973. Copper metabolism in schizophrenia. Indian J. Med. Res. 61:1147–1152.

    Google Scholar 

  19. Gubler, C. J., Cartwright, G. E., andWintrobe, M. M. 1950. The anemia of infection. XI. The effect of turpentine and cobalt on the absorption of iron by the rat. J. Biol. Chem. 184:575–578.

    Google Scholar 

  20. Papavasiliou, P. S., Miller, S. T., andCotzias, G. C. 1968. Functional interactions between biogenic amines, 3′, 5′-cyclic AMP and manganese. Nature 220:74–75.

    Google Scholar 

  21. Hadžović, S., Košak, R., andStern, P. 1966. The effect of tremorigenic substances on the copper content of the rat brain. J. Neurochem. 13:1027–1029.

    Google Scholar 

  22. Wong, P. Y., andFritze, K. 1969. Determination by neutron activation of copper, manganese and zinc in the pineal body and other areas of brain tissue. J. Neurochem. 16:1231–1234.

    Google Scholar 

  23. Parr, R. M., andTaylor, D. M. 1964. The concentrations of cobalt, copper, iron and zinc in some normal human tissues as determined by neutron-activation analysis. Biochem. J. 91:424–431.

    Google Scholar 

  24. Sowell, W. L. 1967. Trace Metal Alternations during Endrin Intoxication, University Microfilms, Ann Arbor, Michigan.

    Google Scholar 

  25. Kofod, B. 1970. Iron, copper and zinc in rat brain. Eur. J. Pharmacol. 13:40–45.

    Google Scholar 

  26. Hanig, R. C., andAprison, M. H. 1967. Determination of calcium, copper, iron, magnesium, manganese, potassium, sodium, zinc and chloride concentration in several brain areas. Anal. Biochem. 21:169–177.

    Google Scholar 

  27. Warren, P. J., Earl, C. J., andThompson, R. H. S. 1960. The distribution of copper in human brain. Brain 83:709–717.

    Google Scholar 

  28. Harrison, W. W., Netsky, M. G., andBrown, M. D. 1968. Trace elements in human brain copper, zinc and magnesium. Clin. Chim. Acta 21:55–60.

    Google Scholar 

  29. Backer, E. T. 1969. Chloric acid digestion in the determination of trace metals (Fe, Zn, and Cu) in brain and hair by atomic absorption spectrophotometry. Clin. Chim. Acta 24:233–238.

    Google Scholar 

  30. Dulka, J. J., andRisby, T. H. 1976. Ultratrace metals in some environmental and biological systems. Anal. Chem. 48:640A-653A.

    Google Scholar 

  31. Hui, K. S., Davis, B. A., andBoulton, A. A. 1975. The separation by thin-layer chromatography of trace metals as their tetraphenylporphyrin chelates. J. Chromatogr. 115:581–586.

    Google Scholar 

  32. Davis, B. A., Hui, K. S., Durden, D. A., andBoulton, A. A. 1976. Qualitative and quantitative mass spectrometry of some biologically important trace metals as their tetraphenylporphyrin chelates. Biomed. Mass Spectrom. 3:71–76.

    Google Scholar 

  33. Davis, B. A., Hui, K. S., andBoulton, A. A. The analysis of trace metals as their tetraphenylporphyrin chelates by the mass spectrometric integrated ion current technique.In Frigerio, A., andDesiderio, D. M. (eds.), Advances in Mass Spectrometry in Biochemistry and Medicine, Spectrum Publication Inc., New York (in press).

  34. Glowinski, J., andIversen, L. L. 1966. Regional studies of catecholamines in rat brain. I. The disposition of3H-norepinephrine,3H-dopamine and3H-dopa in various regions of the brain. J. Neurochem. 13:655–669.

    Google Scholar 

  35. Boulton, A. A., andWu, P. H. 1973. Biosynthesis of cerebral phenolic amines. II.In vivo regional formation ofp-tyramine and octopamine from tyrosine and dopamine. Can. J. Biochem. 51:428–435.

    Google Scholar 

  36. Donaldson, J., St-Pierre, T., Minnich, J. L., andBarbeau, A. 1973. Determination of Na+, K+, Mg2+, Cu2+, Zn2+ and Mn2+ in rat brain regions. Can. J. Biochem. 51:87–92.

    Google Scholar 

  37. Kowalski, B. R., Isenhour, T. L., andSievers, R. E. 1969. Ultra-trace mass spectrometric metal analysis using heptafluorodimethyloctanedione chelates. Anal. Chem. 41:998–1003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, KS., Davis, B.A. & Boulton, A.A. Analysis of copper in brain by the mass-spectrometric integrated-ioncurrent procedure. Neurochem Res 2, 495–506 (1977). https://doi.org/10.1007/BF00966010

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966010

Keywords

Navigation