Skip to main content
Log in

Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: Role of glutamic acid

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We studied the effect of local administration of nicotine on the release of monoamines in striatum, substantia nigra, cerebellum, hippocampus, cortex (frontal, cingulate), and pontine nucleus and on the release of glutamic acid in striatum of rats in vivo, using microdialysis for nicotine administration and for measuring extracellular amine and glutamic acid levels. Following nicotine administration the extracellular concentration of dopamine, increased in all regions except cerebellum; serotonin increased in cingulate and frontal cortex; and norepinephrine increased in substantia nigra, cingulate cortex, and pontine nucleus. Cotinine, the major nicotine metabolite, had no effect at similar concentrations. The cholinergic antagonists mecamylamine and atropine, the dopaminergic antagonists haloperidol and sulpiride, and the excitatory amino acid antagonist kynurenic acid all inhibited the nicotine-induced increase of extracellular dopamine in the striatum. The fact that kynurenic acid almost completely prevented the effects of nicotine, and nicotine at this concentration produced a 6-fold increase of glutamic acid release, suggests that the effect of nicotine is mainly mediated via glutamic acid release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shimohama, S., Taniguchi, T., Fujiwara., M., and Kameyama J. 1985. Biochemical characterization of nicotinic cholinergic receptors in human brain: Binding of (−)-[3H]nicotine. J. Neurochem. 45:604–610.

    PubMed  Google Scholar 

  2. Broussolle, E. P., Wong, D. F., Fanelli, R. J., and London, E. D. 1989. In vivo specific binding of [3H]nicotine in the mouse brain. Life Sci. 44:1123–1132.

    PubMed  Google Scholar 

  3. Clarke, P. B., Schwartz, S. M., Paul, C. B., Pert, C. B., and Pert, A. 1985. Nicotine binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H]nicotine and [125I]-α-bungarotoxin. J. Neurosci. 5:1307–1315.

    PubMed  Google Scholar 

  4. Giorguieff-Chesslet, M. F., Kernel, M. F., Wandseheer, D., and Glowinski, J. 1979. Regulation of dopamine release by presynaptic nicotinic receptors in rat striatal slices: Effects of nicotine in low concentration. Life Sci. 25:1257–1262.

    PubMed  Google Scholar 

  5. Lichtensteiger, W., Hefti, F., Felix, D., Huwyler, T., Melamed, E., and Schlumpf, M., 1982. Stimulation of nigrostriatal dopamine neurons by nicotine. Neuropharmacology 31:963–968.

    Google Scholar 

  6. Arqueros, L., Naquira, D., and Zunino, E. 1978. Nicotine-induced release of catecholamines, from rat hippocampus and striatum. Biochem. Pharmacol. 27:2667–2674.

    PubMed  Google Scholar 

  7. Westfall, T. C., Grant, H., and Perry, H. 1983. Release of dopamine and 5-hydroxytryptamine from rat striatal slices following activation of nicotinic cholinergic, receptors. Gen. Pharmacol. 14:321–325.

    PubMed  Google Scholar 

  8. Rapier, C., Lunt, G. G., and Wonnacott, S. 1988. Stereoselective nicotine-induced release of dopamine from striatal synaptosomes: Concentration dependence and repetitive stimulation. J. Neurochem. 50:1123–1130.

    PubMed  Google Scholar 

  9. Mitchell, S. N., Brazell, M. P., Joseph, M. H., Alevijeh, S. M., and Gray, A. J. 1989. Regionally specific effects of acute and chronic nicotine on rates of catecholamine and 5-hydroxytryptamine synthesis in rat brain. Eur. J. Pharmacol. 167:311–322.

    PubMed  Google Scholar 

  10. Imperato, A., Mulas, A., and Di Chiara, G. 1986. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur. J. Pharmacol. 132:337–338.

    PubMed  Google Scholar 

  11. Mifsud, J., Hernandez, L., and Hoebel, B. G. 1989. Nicotine infused into the nucleus accumbens increases synaptic dopamine as measured by in vivo microdialysis. Brain Res. 478:365–367.

    PubMed  Google Scholar 

  12. Paxinos, G., and Watson, C. 1986. The rat brain in stereotaxic coordinates. Academic Press, New York.

    Google Scholar 

  13. Tosman, T., and Ungerstedt, U. 1986. The effect of apomorphine and pergolide on potassium evoked overflow of GABA in rat striatum studied by microdialysis. Eur. J. Pharmacol. 123:295–298.

    PubMed  Google Scholar 

  14. Zetterstrom, T., Sharp, T., Marsden, A., and Ungerstedt, U. 1983. In vivo measurement of dopamine and its metabolites by intracerebral dialysis: Changes after d-amphetamine. J. Neurochem. 41:1769–1773.

    PubMed  Google Scholar 

  15. Neidle, A., Banay-Schwartz, M., Sacks, S., and Dunlop, D. 1990. Amino acid analysis using P-naphthylisocyanate as a precolumn high-performance liquid chromatography derivatization reagent. Anal. Biochem. 180:291–297.

    Google Scholar 

  16. Hurd, L. Y., and Ungerstedt, U. 1989. Cocaine: An in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse 3:48–54.

    PubMed  Google Scholar 

  17. Hurd, L. Y., Kehr, J., and Ungerstedt, U. 1989. In vivo neurochemical profile of dopamine uptake inhibitors and releasers in rat caudate-putamen. Eur. J. Pharmacol. 166:251–260.

    PubMed  Google Scholar 

  18. Behringer, R. J. 1983. The role, of dopamine in locomotor activity and learning. Brain Res. Rev. 6:173–196.

    Google Scholar 

  19. Fishman, R. H. B., Figenbaum, J. J., Yanai, J., and Klawans, H. L. 1983. The relative importance of dopamine and norepinephrine in mediating locomotor activity. Prog. Neurobiol. 20:55–88.

    PubMed  Google Scholar 

  20. Robinson, S. E. 1983. Effects of specific serotonergic lesions on cholinergic neurons in the hippocampus, cortex and striatum Life Sci. 32:345–353.

    PubMed  Google Scholar 

  21. Reisine, T. D., Chesselet, M. F., Lubetsky, C., Cheramy, A., and Glowinski, J. 1982. A role for striatal beta-adrenergic receptors in regulation of dopamine release. Brain Res. 241:123–130.

    PubMed  Google Scholar 

  22. Todorov, L., Windish, K., Lajtha, A., Sershen, H., Papasova, M., and Vizi, E. S. 1991. Prejunctional nicotinic receptors involved in facilitation of stimulation-evoked noradrenaline release from the vas deferens. Br. J. Pharmacol., 102:186–190.

    PubMed  Google Scholar 

  23. Taylor, C. A., Tsai, C., and Lehmann, J. Glycine-evoked release of [3H]acetylcholine from rat striatal slices independent of the NMDA receptor. Naunyn-Schmiedeberg's Arch. Pharmacol. 337:552–555.

  24. Giorguiff, M. F., LeFloc'h, M. L., Glowinski, J. L., and Besson, M. J. 1977. Involvement of cholinergic presynaptic receptors of nicotine and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat. J. Pharmacol. Exp. Ther. 200:535–544.

    PubMed  Google Scholar 

  25. Vizi, E. S., Kobayasi, O., Torocsik, A., Kinjo, M., Manabe, N., Goldiner, P. L., Potter, P. E., and Foldes, F. F. 1989. Heterogeneity of presynaptic muscarinic receptors involved in modulation of transmitter release. Neuroscience 31:259–267.

    PubMed  Google Scholar 

  26. Giorguieff, M. F., Kernel, M. L., and Glowinski, J. 1977. Presynaptic effect ofL-glutamic acid on the release of dopamine in rat striatal slices. Neurosci. Lett. 6:73–77.

    Google Scholar 

  27. Roberts, P. J., and Anderson, S. D. 1979. Stimulatory effect ofL-glutamate and related amino acids on3H-dopamine release from rat striatum: an in vitro model for glutamate action. J. Neurochem. 32:1539–1545.

    PubMed  Google Scholar 

  28. Cheramy, A., Romo, R., Godeheu, G., Baruch, P., and Glowinski, J. 1986. In vivo presynaptic control of dopamine release in the cat caudate nucleus-II. Facilitatory or inhibitory influence ofL-glutamate. Neuroscience 19:1081–1090.

    PubMed  Google Scholar 

  29. Toth, E., and Lajtha, A. 1991. Nicotine stimulates the release of amino acids in brain in vivo. Trans. Am. Soc. Neurochem. 22:216.

    Google Scholar 

  30. Westfall, T. C., Meren, G., Vickery, L., Perry, H., Naes, L., and Yoon, K.-W. P. 1985. Regulation by nicotine of midbrain dopamine neurons. In: Progress in Brain Research Vol. 79 (Eds. A. Nordberg, K. Fuxe, B. Holmstedt., and A. Sundwall), Elsevier, New York, p. 173–185.

    Google Scholar 

  31. Vizi, E. S. 1984. Non-synaptic interaction between neurons: modulation of neurochemical transmission. John Wiley and Sons, Chichester, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toth, E., Sershen, H., Hashim, A. et al. Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: Role of glutamic acid. Neurochem Res 17, 265–271 (1992). https://doi.org/10.1007/BF00966669

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966669

Key Words

Navigation