Skip to main content
Log in

Blockade of glutamate excitotoxicity and its clinical applications

  • Therapeutic Applications
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate has long been known to play a vital role in the normal functioning of neurons, serving as the main excitatory neurotransmitter in the central nervous system. The normal function of glutamate, as a means of communication from one neuron to the next, breaks down in certain disease states. Under particular scrutiny has been the etiology of neuronal damage caused by ischemic disease, seen most commonly in cerebrovascular embolic disease, commonly known as a stroke. It has been shown that damage associated with ischemic disease in the brain is not a direct result of hypoxia or deprivation of metabolic intermediates. In fact, the crucial role is played by an excessive efflux of glutamate by ischemic neurons, which then in turn activates pathways in post-synaptic neurons leading to acute cell swelling and later, cell death. An extremely hopeful development in the field of glutamate excitotoxicity has been the application of therapeutic methods aimed at attenuating the damaging action of glutamate, in an effort to decrease morbidity associated with such common diseases as stroke and other neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, D. W. 1990. The role of glutamate neurotoxicity in hypoxic-ischemia neuronal death. Annual Rev. of Neurosci. 13:171–82.

    Google Scholar 

  2. Chan, P. H., Fishman, R. A., Lee, J. L., and Candelise, L. 1979. Effects of excitatory neurotransmitter amino acids on swelling of rat brain cortical slices. J. Neurochem. 33:1309–1315.

    Google Scholar 

  3. Choi, D. W. 1988. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8(1):185–96.

    Google Scholar 

  4. Hirose, K., and Chan, P. H. unpublished observations.

  5. Siesjo, B., and Bengtsson, F. 1989. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow & Metab. 9(2):127–40.

    Google Scholar 

  6. Chan, P. H., and Fishman, R. A. 1985. Free fatty acids, oxygen free radicals and membrane alterations in brain ischemia and injury. Pages 161–169,in Plum, F., and Pulsinelli, W. A. (eds.), Cerebrovascular Diseases, 14th Princeton Conference, Raven Press, New York.

    Google Scholar 

  7. Choi, D. W. 1990. Methods for antagonizing glutamate neurotoxicity. Cerebrovascular & Brain Metab. Review 2(2):105–147.

    Google Scholar 

  8. Sharp, F. R., Jasper, P., Hall, J., Noble, L., and Sagar, S. M. 1991. MK-801 and ketamine induce heat shock protein HSP 72 in injured neurons in posterior cingulate and retrosplenial cortex. Ann. Neurol. 30:801–809.

    Google Scholar 

  9. Olney, J. W., Labruyere, G., Wang, G., Wozniak, D. F., Price, M. T., and Sesma, M. A. 1991. NMDA antagonist neurotoxicity: Mechanism and prevention. Science 254(5037):1515–1518.

    Google Scholar 

  10. Zivin, J. A., and Choi, C. W. 1991. Stroke Therapy. Sci. Amer. 265(1):56–63.

    Google Scholar 

  11. Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P., and Honore, T. 1990. 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F)-quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571–574.

    Google Scholar 

  12. Grotta, J. C., Picone, C. M., Ostrow, P. T., Strong, R. A., Earls, R. M., Yao, L. P., Rhoades, H. M., and Dedman, J. R. 1990. CGS-19755, a competitive NMDA receptor antagonist, reduces calcium-calmodulin binding and improves outcome after global cerebral ischemia. Ann. Neurol. 27:612–619.

    Google Scholar 

  13. Greenberg, D. A. 1987. Calcium channels and calcium channels antagonists. Ann. Neurol. 21:317–330.

    Google Scholar 

  14. Kinouchi, H., Epstein, C. J., Mizui, T., Carlson, E., Chen, S. F., and Chan, P. H. 1991. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn-superoxide dismutase. Proc. Natl. Acad. Sci. USA 88:11158–11162.

    Google Scholar 

  15. Hall, E. D., and Braughler, J. M. 1989. Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad. Biol. Med. 6:303–313.

    Google Scholar 

  16. Dwyer, B. E., Nishimura, R. N., and Brown, I. R. 1989. Synthesis of the major inducible heat shock protein in rat hippocampus after neonatal hypoxia-ischemia. Ex. Neurol. 104:28–31.

    Google Scholar 

  17. Ferriero, D. M., Soberano, H. Q., Simon, R. P., and Sharp, F. R. 1990. Hypoxia-ischemia induces heat shock protein-like (HSP72) immunoreactivity in neonatal rat brain. Dev. Brain Res. 53:145–150.

    Google Scholar 

  18. Gonzalez, M. F., Shiraishi, K., Hisanaga, K., Sagar, S. M., Mandabach, M., and Sharp, F. R. 1989. Heat shock proteins as markers of neuronal injury. Mol. Brain Res. 6:93–100.

    Google Scholar 

  19. Vass, K., Welch, W. J., and Nowak, T. S. J. 1988. Localization of 70kD stress protein induction in gerbil brain after ischemia. Acta Neuropathol. 77:128–135.

    Google Scholar 

  20. Gonzalez, M. F., Lowenstein, D. H., Hisanaga, K., Simon, R. P., Sagar, S. M., and Sharp, F. R. 1991. Induction of heat shock protein 72-like immunoreactivity in the hippocampal formation following transient global ischemia. Brain Res. Bull. 26:241–150.

    Google Scholar 

  21. Uney, J. B., Leight, P. N., Marsden, C. D., Lees, A., and Anderson, B. H. 1988. Stereotaxic injection of kainic acid into the striatum of rats induces synthesis of mRNA for heat shock protein 70. FEBS Lett. 235:215–218.

    Google Scholar 

  22. Kinouchi, H., Sharp, F. R., Hill, M. P., Koistinaho, J., Sagar, S. M., and Chan, P. H. in press. Induction of 70-kDa heat shock protein and hsp 70 mRNA following transient focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab.

  23. Kirino, T., and Tsujita, Y., Tamura, A. 1991. Induced tolerance to ischemia in gerbil hippocampal neurons. J. Cereb. Blood Flow Metab. 11:299–307.

    Google Scholar 

  24. Lowenstein, D. H., Chan, P. H., and Miles, M. F. 1991. The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity. Neuron 7:1053–1060.

    Google Scholar 

  25. Beal, M. F. 1992. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31(2):119–130.

    Google Scholar 

  26. Young, A. B., J. T., G., Hollingsworth, Z., Albin, R., D'Amato, C., Shoulson, I., and Penny, J. B. 1988. NMDA receptor losses in putamen from patients with Huntington's disease. Science 241:981–983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Claude Baxter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, K., Chan, P.H. Blockade of glutamate excitotoxicity and its clinical applications. Neurochem Res 18, 479–483 (1993). https://doi.org/10.1007/BF00967252

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967252

Key Words

Navigation