Skip to main content
Log in

Tyrosine kinase-mediated signal transduction pathways and the actions of polypeptide growth factors and G-protein-coupled agonists in smooth muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This synopsis focuses on the role that tyrosine kinase pathways may play in the actue regulation of smooth muscle contractility by receptor-kinase-activating growth factors, such as epidermal growth factor-urogastrone (EGF-URO) and by G-protein-coupled agonists, such as angiotensin-II. Growth factor-activated response paradigms that modulate smooth muscle contractility are summarized and the parallels between the actions of G-protein-coupled agonists and growth factors in these response systems are pointed out. A possible dynamic interplay between tyrosine kinase and tyrosine phosphatase activities to modulate tissue tension is also hypothesized. Finally, a model is proposed, wherein an intermediary tyrosine kinase pathway is suggested as a point of convergence for the regulation of smooth muscle contractility by agonists as diverse as EGF-URO and angiotensin-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Collett MS, Erikson RL: Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Science USA 75: 2021–2024, 1978

    Google Scholar 

  2. Hunter T, Sefton BM: Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77: 1311–1315, 1980

    PubMed  Google Scholar 

  3. Hanks SK, Quinn AM, Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52, 1988

    PubMed  Google Scholar 

  4. Courtneidge SA, Fumagalli S, Koegl M, Superti-Furga G, Twamley-Stein GM: The src family of protein tyrosine kinases: regulation and functions. Development Suppl: 57–64, 1993

  5. Cooper JA: The src-family of protein-tyrosine kinases. In: Peptides and Protein Phosphorylation. B. Kemp and P.F. Alewood, (eds), CRC Press, Boca Raton, 1990, pp 85–113

    Google Scholar 

  6. Glenney JR, Jr: Tyrosine-phosphorylated proteins: mediators of signal transduction from the tyrosine kinases. Biochim Biophys Acta 1134: 113–127, 1992

    PubMed  Google Scholar 

  7. Schlessinger J, Ullrich A: Growth factor signalling by receptor tyrosine kinases. Neuron 9: 383–391, 1992

    PubMed  Google Scholar 

  8. Miyajima A, Kitamura T, Harada N, Yokota T, Arai K-I: Cytokine receptors and signal transduction. Ann Rev Immunol 10: 295–331, 1992

    Google Scholar 

  9. Kishimoto T, Taga T, Akira S: Cytokine signal transduction. Cell 76: 253–262, 1994

    PubMed  Google Scholar 

  10. Hollenberg MD: The acute actions of growth factors in smooth muscle systems. Life Sci 54: 223–235, 1994

    PubMed  Google Scholar 

  11. Muramatsu I, Hollenberg MD, Lederis K: Vascular actions of epidermal growth factor-urogastrone: possible relationships to prostaglandin production. Can J Physiol Pharmacol 63: 994–999, 1985

    PubMed  Google Scholar 

  12. Muramatsu I, Itoh H, Lederis K, Hollenberg MD: Distinctive actions of epidermal growth factor-urogastrone in isolated smooth muscle preparations from guinea pig stomach: differential inhibition by indomethacin. J Pharmacol Exp Ther 245: 625–631, 1988

    PubMed  Google Scholar 

  13. Patel P, Itoh H, Lederis K, Hollenberg MD: Contraction of guinea pig trachea by epidermal growth factor-urogastrone. Can J Physiol Pharmacol 66: 1308–1312, 1988

    PubMed  Google Scholar 

  14. Gan BS, Hollenberg MD: Distinct coronary artery receptor systems for epidermal growth factor-urogastrone. J Pharmacol Exp Ther 252: 1277–1282, 1990

    PubMed  Google Scholar 

  15. Yang S-G, Saifeddine M, Hollenberg MD: Tyrosine kinase inhibitors and the contractile action of epidermal growth factor-urogastrone and other agonists in gastric smooth muscle. Can J Physiol Pharmacol 70: 85–93, 1992

    PubMed  Google Scholar 

  16. Yang S-G, Saifeddine M, Chuang M, Severson DL, Hollenberg MD: Diacylglycerol lipase and the contractile action of epidermal growth factor-urogastrone: evidence for distinct signal pathways in a single strip of gastric smooth muscle. Eur J Pharmacol Molec Pharmacol 207: 225–230, 1991

    Google Scholar 

  17. Bourgoin S, Grinstein S: Peroxides of vanadate induce activation of phospholipase D in HL-60 cells. J Biol Chem 267: 11908–11916, 1992

    PubMed  Google Scholar 

  18. Uings IJ, Thompson NT, Randall RW, Spacey GD, Bonser RW, Hudson AT, Garland LG: Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil. Biochem J 281: 597–600, 1992

    PubMed  Google Scholar 

  19. Dubyak GR, Schomisch SJ, Kusner DJ, Xie M: Phospholipase D activity in phagocytic leucocytes is synergistically regulated by G-protein- and tyrosine kinase-based mechanisms. Biochem J 292: 121–128, 1993.

    PubMed  Google Scholar 

  20. Wilkes LC, Patel V, Purkiss JR, Boarder MR: Endothelin-1 stimulated phospholipase D in A10 vascular smooth muscle derived cells is dependent on tyrosine kinase. FEBS Lett 322: 147–150, 1993

    PubMed  Google Scholar 

  21. Boarder MR: A role for phospholipase D in control of mitogenesis. Trends Pharmacol Sci 15: 57–62, 1994

    PubMed  Google Scholar 

  22. Lee K-M, Toscas K, Villereal ML: Inhibition of bradykinin- and thapsigargin-induced Ca2+ entry by tyrosine kinase inhibitors. J Biol Chem 268: 9945–9948, 1993

    PubMed  Google Scholar 

  23. Muramatsu I, Hollenberg MD, Lederis K: Modulation by epidermal growth factor-urogastrone of contraction in isolated canine helical mesenteric arterial strips. Can J Physiol Pharmacol 64: 1561–1565, 1986

    PubMed  Google Scholar 

  24. Carter NB, Fawcett AA, Hales JRS Moore GPM, Panaretto, BA: Circulatory effects of a depilatory dose of mouse epidermal growth factor in sheep. J Physiol (Lond) 403: 27–39, 1988

    Google Scholar 

  25. Scoggins BA, Butkus A, Coghlan JP, Fei DTW, McDougall JG, Niall HD, Wang X-M: In-vivo cardiovascular, renal and endocrine effects of epiderrnal growth factor in sheep. Abstr S-110, 7th Congr Endocrinol, Exerpta Medica Aust., 1984, p 124

  26. Rodbell M: The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284: 17–22, 1980

    PubMed  Google Scholar 

  27. Hepler JR, Gilman AG: G-proteins. Trends in Biol Sci 17: 383–387, 1992

    Google Scholar 

  28. DeVivo M, Iengar R: G-protein pathways: signal processing by effectors. Mol Cell Endocrinol 100: 65–70, 1994

    PubMed  Google Scholar 

  29. Milligan G: Mechanisms of multifunctional signalling by G protein-linked receptors. Trends in Pharmacol Sci 14: 239–244, 1993

    Google Scholar 

  30. Levitzki A, Bar-Sinai A: The regulation of adenylyl cyclase by receptor-operated G proteins. Pharmacol Ther 50: 271–283, 1991

    PubMed  Google Scholar 

  31. Levitzki A, Marbach I, Bar-Sinai A: The signal transduction between β-receptors and adenylyl cyclase. Life Sciences 52: 2093–2100, 1993

    PubMed  Google Scholar 

  32. Birnbaumer L: G proteins in signal transduction. Annu Rev Pharmacol Toxicol 30: 675–705, 1990

    PubMed  Google Scholar 

  33. Simon MI, Strathmann MP, Gautam N: Diversity of G proteins in signal transduction. Science 252: 802–808, 1991

    PubMed  Google Scholar 

  34. Clapham DE, Neer EJ: New roles for G-protein βγ-dimers in transmembrane signalling. Nature 365: 403–406, 1993

    PubMed  Google Scholar 

  35. Exton JH: Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212: 26–42, 1994

    PubMed  Google Scholar 

  36. Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–126, 1991

    PubMed  Google Scholar 

  37. Berridge M: Inositol trisphosphate and calcium signalling. Nature 361: 315–325, 1993

    PubMed  Google Scholar 

  38. Huckle WR, Prokop CA, Dy RC, Herman B, Earp S: Angiotensin II stimulates protein-tyrosine phosphorylation in a calcium-dependent manner. Molec Cell Biol 10: 6290–6298, 1990

    PubMed  Google Scholar 

  39. Huckle WR, Dy RC, Earp HS Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci USA 89: 8837–8841, 1992

    PubMed  Google Scholar 

  40. Force T, Kyriakis JA, Bonventre JV: Endothelin, vasopressin, and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and-independent pathways in glomerular mesangial cells. J Biol Chem 266: 6650–6656, 1991

    PubMed  Google Scholar 

  41. Tsuda T, Kawahara Y, Shii K, Koide M, Ishida Y, Yokoyama M: Vasoconstrictor-induced protein-tyrosine phosphorylation in cultured vascular smooth muscle cells. FEBS Lett 285: 44–48, 1991

    PubMed  Google Scholar 

  42. Zachary I, Gil J, Lehmann W, Sinnett-Smith J, Rozengurt E: Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swill 3T3 cells. Proc Natl Acad Sci USA 88: 4577–4581, 1991

    PubMed  Google Scholar 

  43. Leeb-Lundberg LMF, Song X-H: Bradykinin and bombesin rapidly stimulate tyrosine phosphorylation of a 120-kDa group of proteins in Swiss 3T3 cells. J Biol Chem 266: 7746–7749, 1991

    PubMed  Google Scholar 

  44. Molloy CJ, Taylor DS, Weber H: Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem 268: 7338–7345, 1993

    PubMed  Google Scholar 

  45. Yang S-G, Saifeddine M, Laniyonu AA, Hollenberg MD: Distinct signal transduction pathways for angiotensin-II in guinea pig gastric smooth muscle: differential blockade by indomethacin and tyrosine kinase inhibitors. J Pharmacol Exp Ther 264: 958–966, 1993

    PubMed  Google Scholar 

  46. Gazit A, Yaish P, Gilon C, Levitzki, A: Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem 32: 2344–2345, 1989

    PubMed  Google Scholar 

  47. Levitzki A: Tyrphostins: tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction. FASEB J 6: 3275–3282, 1992

    PubMed  Google Scholar 

  48. Laniyonu AA, Saifeddine M, Yang S-G, Hollenberg MD: Tyrosine kinase inhibitors and the contractile action of G-protein-linked vascular agonists. Can J Physiol Pharmacol 72: 1075–1085, 1994

    PubMed  Google Scholar 

  49. Di Salvo J, Steusloff A, Semenchuk L, Satoh, S., Kolquist, K, Pfitzer G: Tyrosine kinase inhibitors suppress agonist-induced contraction in smooth muscle. Biochem Biophys Res Commun 190: 968–974, 1993

    PubMed  Google Scholar 

  50. Griendling KK, Alexander RW: Angiotensin, other pressors and the transduction of vascular smooth muscle contraction. In: J.H. Laragh and B.M. Brenner (eds). Hypertension: Pathophysiology, Diagnosis, and Management. Raven Press, New York, 1990, 1: pp 583–600

    Google Scholar 

  51. Kadota S, Fantus IG, Deragon G, Guyda HJ, Hersh B, Posner BI: Peroxide(s) of vanadium: a novel and potent insulin-mimetic agent which activates the insulin receptor kinase. Biochem Biophys Res Commun 147: 259–266, 1987

    PubMed  Google Scholar 

  52. Fantus IG, Kadota S, Deragon G, Foster B, Posner BI: Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochem 28: 8864–8871, 1989

    Google Scholar 

  53. Laniyonu A, Saifeddine M, Ahmad S, Hollenberg MD: Regulation of vascular and gastric smooth muscle contractility by pervanadate. Brit J Pharmacol 113: 403–410, 1994

    Google Scholar 

  54. Heffetz D, Bushkin I, Dror R, Zick Y: The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem 265: 2896–2902, 1990

    PubMed  Google Scholar 

  55. Takahasi K, Bardhan S, Kambayashi Y, Shirai H, Inagami T: Protein tyrosine phosphatase inhibition by angiotensin II in rat pheochromocytoma cells through type 2 receptor AT2. Biochem Biophys Res Commun 198: 60–66, 1994

    PubMed  Google Scholar 

  56. Buscail L, Delesque N, Estève J-P, Saint-Laurent N, Prats H, Clerc P, Robberecht P, Bell GI, Liebow C, Schally AV, Vaysse N, Susni C: Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc Natl Acad Sci USA 91: 2315–2319, 1994

    PubMed  Google Scholar 

  57. Butcher RD, Schöllmann C, Marmé D: Angiotensin II mediates intracellular signalling in vascular smooth muscle cells by activation of tyrosine-specific protein kinases and C-RAF-1. Biochem Biophys Res Commun 196: 1280–1287, 1993

    PubMed  Google Scholar 

  58. Earp HS, Huckle, WR: Intracellular calcium and the regulation of agonist-stimulated tyrosine kinase activity. Can J Physiol Pharmacol 1994, 72, Suppl. 1, 39

    PubMed  Google Scholar 

  59. Zachary I, Rozengurt E: Focal Adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 71: 891–894, 1992

    PubMed  Google Scholar 

  60. Sinnett-Smith J, Zachary I, Valverde AM, Rozengurt E: Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. J Biol Chem 268: 14261–14268, 1993

    PubMed  Google Scholar 

  61. Zachary I, Sinnett-Smith J, Turner CE, Rozengurt E: Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation of the focal adhesion-associated protein paxillin in Swiss 3T3 cells. J Biol Chem 268: 22060–22065, 1993

    PubMed  Google Scholar 

  62. Rozengurt E, Sinnett-Smith J, Zachary I, Seckl M, Rankin S: Agonist stimulation of tyrosine phosphorylation in cultured cell systems. Can J Physiol Pharmacol 1994, 72: Suppl., p 39

    PubMed  Google Scholar 

  63. Cuatrecasas P, Hollenberg MD: Membrane receptors and hormone action. Adv Protein Chem 30: 251–451, 1976

    PubMed  Google Scholar 

  64. Hollenberg MD: Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends in Pharmacol Sci 15: 108–114, 1994

    Google Scholar 

  65. Hernandez-Sotomayor SMT, Carpenter G: Epidermal growth factor receptor: elements of intracellular communication. J Membrane Biol 128: 81–89, 1992

    Google Scholar 

  66. Pawson T, Gish GD: SH2 and SH3 domains: from structure to function. Cell 71: 359–362, 1992

    PubMed  Google Scholar 

  67. Courtneidge SA, Dhand R, Pilat D, Twamley GM, Waterfield MD, Roussel MF: Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor. EMBO J 12: 943–950, 1993

    PubMed  Google Scholar 

  68. Mori S, Monnstrand L, Yokote K, Engstrom A, Courtneidge SA, Claesson-Welsh L, Heldin CH: Identification of two juxtamembrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO J 12: 2257–2264, 1993

    PubMed  Google Scholar 

  69. Velazquez L, Fellous M, Stark GR, Pellegrini S: A protein tyrosine kinase in the interferon α/β signalling pathway. Cell 70: 313–322, 1992

    PubMed  Google Scholar 

  70. Shual K, Zlemlecki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, Darnell JE: Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366: 580–583, 1993

    PubMed  Google Scholar 

  71. Silvennolnen O, Ihle Schlessinger J, Levy DE: Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 366: 583–585, 1993

    PubMed  Google Scholar 

  72. Wang L-M, Keegan AD, Li W, Lienhard GE, Pacini S, Gutkind JS, Myers MR, Jr, Sun X-J, White MF, Aaronson SA, Paul WE, Pierce JH: Common elements in interleukin 4 and insulin signalling pathways in factor-dependent hematopoietic cells. Proc Natl Acad Sci USA 90: 4032–4036, 1993

    PubMed  Google Scholar 

  73. Wijetunge S, Aalkjaer C, Schacter M, Hughes AD: Tyrosine kinase inhibitors block calcium channel currents in vascular smooth muscle cells. Biochem Biophys Res Commun 189: 1620–1623, 1992

    PubMed  Google Scholar 

  74. Sargeant P, Farndale RW, Sage SO: The tyrosine kinase inhibitors methyl 2, 5-dihydroxycinnamate and genistein reduce thrombinevoked tyrosine phosphorylation and Ca2+ entry in human platelets. FEBS Lett 315: 242–246, 1993

    PubMed  Google Scholar 

  75. Sargeant P, Farndale RW, Sage SO: ADP-and thapsigargin-evoked Ca2+ entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2, 5-dihydroxycinnamate in fura-2-loaded human platelets

  76. Gnegy ME: Calmodulin in neurotransmitter and hormone action. Ann Rev Pharmacol Tox 33: 45–70, 1993

    Google Scholar 

  77. Lu KP, Means AR: Regulation of the cell cycle by calcium and calmodulin. Endocrine Rev 14: 40–58, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollenberg, M.D. Tyrosine kinase-mediated signal transduction pathways and the actions of polypeptide growth factors and G-protein-coupled agonists in smooth muscle. Mol Cell Biochem 149, 77–85 (1995). https://doi.org/10.1007/BF01076566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076566

Key words

Navigation