Skip to main content
Log in

Time- and dose-dependent effects of protein kinase C on proximal bicarbonate transport

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Activation of protein kinase C has been shown to cause both stimulation and inhibition of transport processes in the brush-border membrane and renal tubule. This study was designed to examine the dose-response nature and time-dependent effect of 4 β-phorbol-12-myristate-13-acetate (PMA) on the rates of bicarbonate absorption (J HCO3) and fluid absorption (J v) in the proximal convoluted tubule (PCT) of rat kidney. Bicarbonate flux was determined by total CO2 changes between the collected fluid and the original perfusate as analyzed by microcalorimetry. Luminal perfusion of PMA (10−10 ≈ 10−5 M) within 10 min caused a significant increase ofJ HCO3 andJ v. A peaked curve of the dose response was observed with maximal effect at 10−8 M PMA on both bicarbonate and fluid reabsorption, which could be blocked completely by amiloride (10−3 m) and EIPA (10−5 M). On the other hand, with an increase of perfusion time beyond 15 min, PMA (10−8 and 10−6 M) could inhibitJ HCO3 andJ v. Amiloride (10−3 M) or EIPA (10−5 M) significantly inhibitsJ HCO3 andJ v, while there is no additive effect of PMA and amiloride or EIPA on PCT transport. An inactive phorbol-ester, 4α-phorbol, that does not activate protein kinase C, had no effects onJ HCO3 andJ v. Capillary perfusion of PMA (10−8 M) significantly stimulate bothJ HCO3 andJ v; however, PMA did not affect glucose transport from either the luminal side or basolateral side of the PCT. These results indicate that activation of endogenous protein kinase C by PMA could either stimulate or inhibit both bicarbonate and fluid reabsorption in the PCT dependent on time and dose, and these effects are through the modulation of Na+/H exchange mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, J., Chang, E.B., Field, M. 1985. Phorbol ester inhibition of Na-H exchange in rabbit proximal colon.Am. J. Physiol. 249:C527-C530

    PubMed  Google Scholar 

  2. Barrett, P.Q., Zawalich, K., Rasmussen, H. 1985. Protein kinase C activity in renal microvillus membrane.Biochem. Biophys. Res. Commun. 128:494–505

    PubMed  Google Scholar 

  3. Baum, M., Hays, S.R. 1988. Phorbol myristate acetate and dioctanoylglycerol inhibit transport in rabbit proximal convoluted tubule.Am. J. Physiol. 254:F9-F14

    PubMed  Google Scholar 

  4. Besterman, J.M., May, W.S., Jr., LeVine, L., III, Cragoe, E.J., Jr., Cuatrecasas, P. 1985. Amiloride inhibits phorbol ester-stimulated Na+/H+ exchange and protein kinase C.J. Biol. Chem. 260:1155–1160

    PubMed  Google Scholar 

  5. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., Nishizuka, Y. 1982. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters.J. Biol. Chem. 257:7847–7851

    PubMed  Google Scholar 

  6. Chan, Y.L. 1980. Adrenergic control of bicarbonate absorption in the proximal convoluted tubule of the rat kidney.Pfluegers Arch. 388:159–164

    Google Scholar 

  7. Chan, Y.L., Biagi, B., Giebisch, G. 1982. Control mechanisms of bicarbonate aransport across the rat proximal convoluted tubule.Am. J. Physiol. 242:F532-F543

    PubMed  Google Scholar 

  8. Chang, E.B., Wang, N.S., Rao, M.C. 1985. Phorbol ester stimulation of active anion secretion in intestine.Am. J. Physiol. 249:C356-C361

    PubMed  Google Scholar 

  9. Chida, K., Kato, N., Kuroki, T. 1986. Down regulation of phorbol diester receptors by proteolytic degradation of protein kinase C in a cultured cell line of fetal rat skin kerationcytes.J. Biol. Chem. 261:13013–13018

    PubMed  Google Scholar 

  10. Cooper, R.H., Cole, K.E., Williamson, J.R. 1985. Differential effects of phorbol esters on phenylephrine and vasopressin-induced Ca++ mobilization in isolated hepatocytes.J. Biol. Chem. 260:3281–3288

    PubMed  Google Scholar 

  11. Fearn, J.C., King, A.C. 1985. EGI receptor affinity is regulated by intracellular calcium and protein kinase C.Cell 40:991–1000

    PubMed  Google Scholar 

  12. Fondacard, J.D., Henderson, L.S. 1985. Evidence for protein kinase C as a regulator of intestinal electrolyte transport.Am. J. Physiol. 249:G422-G426

    PubMed  Google Scholar 

  13. Garrison, J.C., Johnsen, D.E., Campanile, C.P. 1983. Evidence for the role of phosphorylase, protein kinase C, and other Ca2+-sensitive protein kinase in the response of hepatocytes to angiotenll and vasopressin.J. Biol. Chem. 259:3283–3292

    Google Scholar 

  14. Hammerman, M.R., Rogers, S., Morrissey, J.J., Gavin, J.R., III. 1986. Phorbol ester-stimulated phosphorylation of basolateral membranes from canine kidney.Am. J. Physiol. 250:F1073-F1081

    PubMed  Google Scholar 

  15. Hise, M.K., and Mehta, P. 1988. Activity of calcium/phospholipid dependent protein kinase during rat kidney development.Life Sci. 43:1479–1483

    PubMed  Google Scholar 

  16. Malmstrom, K., Murer, H. 1985. Ca2+-dependent protein phosphorylation in brush border membranes of rat kidney proximal tubules.Pfluegers Arch. 404:358–364

    Google Scholar 

  17. Mellas, J., Hammerman, M.R. 1986. Phorbol ester-induced alkalinization of canine renal proximal tubular cells.Am. J. Physiol. 250:F451-F459

    PubMed  Google Scholar 

  18. Nishizuka, Y. 1983. Calcium, phospholipid turnover and transmembrane signalling.Phil. Trans. R. Soc. London B 302:101–112

    Google Scholar 

  19. Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumor promotion.Nature (London) 308:693–698

    Google Scholar 

  20. Nishizuka, Y. 1986. Studies and perspectives of protein kinase C.Science 233:305–312

    PubMed  Google Scholar 

  21. Rodriguez-Pena, A., Rozengurt, E. 1984. Disappearance of Ca2+-sensitive, phospholipid-dependent protein kinase activity in phorbol ester-treated 3T3 cells.Biochem. Biophys. Res. Commun. 120:1053–1059

    PubMed  Google Scholar 

  22. Rogers, S., Jr., Gavin, J.R., III, Hammerman, M.R. 1985. Phorbol esters inhibit gluconeogenesis in canine renal proximal tubular segments.Am. J. Physiol. 249:F256-F262

    PubMed  Google Scholar 

  23. Rosoff, P.M., Stein, L.F., Cantley, L.C. 1984. Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange.J. Biol. Chem. 259:7056–7060

    PubMed  Google Scholar 

  24. Weinman, E.J., Dubinsky, W.P., Fisher, K., Steplock, D., Dinh, Q., Chang, L., Shenolikar, S. 1988. Regulation of reconstituted renal Na+/H+ exchanger by calcium-dependent protein kinase.J. Membrane Biol. 103:237–244

    Google Scholar 

  25. Weinman, E.J., Shenolikar, S. 1986. Protein kinase C activates the renal apical membrane Na+/H+ exchanger.J. Membrane Biol. 93:133–139

    Google Scholar 

  26. Yamanishi, Y., Takai, Y., Kaibuchi, K., Sano, K., Castagna, M., Nishizuka, Y. 1983. Synergistic functions of phorbol ester and calcium in serotonin release from human platelets.Biochem. Biophys. Res. Commun. 2:778–786

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Chan, Y.L. Time- and dose-dependent effects of protein kinase C on proximal bicarbonate transport. J. Membrain Biol. 117, 131–139 (1990). https://doi.org/10.1007/BF01868680

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868680

Key Words

Navigation