Skip to main content
Log in

Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: I. Pyrazine-ring modifications

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The overall on-and off-rate constants for blocking epithelial Na channels by amiloride analogs were estimated by noise analysis of frog skin epithelium. The substituents at position-5 and −6 of the pyrazine ring of amiloride were varied in order to obtain the structure/rate constant relationship. (1) The off-rate constant increases with halo-substitutions at position-6 in the order Cl<Br<I<F<H. Substitution of Cl by H lowers the standard free energy of activation of the off-step by 2.3 kcal mol−1. The on-rate constant is not affected. Apparently the substituent at ring position-6 controls the duration of attachment in the blocking position. pK a considerations show that the duration is longer when the 6-substituent is more negatively polarized. We suggest that this substituent binds to the receptor by virtue of its electronegativity. (2) In contrast, replacement of the adjacent 5-amino group (electron donor) by H or Cl affects both the on-rate and the off-rate. The dual effect may be explained by a decrease of the electronic charge at more remote parts of the molecule (on-rate decrease), as well as at the 6-position (off-rate increase). Apparently the 5-amino group stabilizes the blocking position by increasing the electron density on the 6-ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aceves, J., Cuthbert, A.W., Edwardson, J.M. 1979. Estimation of the density of sodium entry sites in frog skin epithelium from the uptake of3H-benzamil.J. Physiol. (London) 295:477–490

    Google Scholar 

  • Benos, D.J. 1982. Amiloride, a molecular probe of sodium transport in tissues and cells.Am. J. Physiol. 242:C131-C145

    Google Scholar 

  • Benos, D.J., Hyde, B.A., Latorre, R. 1983. Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin.J. Gen. Physiol. 81:667–685

    PubMed  Google Scholar 

  • Benos, D.J., Mandel, L.J. 1978. Irreversible inhibition of sodium entry sites in frog skin by a photosensitive amiloride analog.Science 199:1205–1206

    PubMed  Google Scholar 

  • Benos, D.J., Simon, S.A., Mandel, L.J., Cala, P.M. 1976. Effect of amiloride and some of its analogues on cation transport in isolated frog skin and thin lipid membranes.J. Gen. Physiol. 68:43–63

    PubMed  Google Scholar 

  • Bicking, J.B., Cragoe, E.J., Jr. 1970. 1-(3-Aminopyrazinoyl)-4,5,5′-trisubstituted biguanidine products. U.S. Patent 3,531,484, September 29

  • Bicking, J.B., Mason, J.W., Woltersdorf, O.W., Jr., Jones, J.H., Kwong, S.F., Robb, C.M., Cragoe, E.J., Jr. 1965. Pyrazine diuretics. I. N-Amidino-3-amino-6-halo-pyrazinecarboxamides.J. Med. Chem. 8:638–642

    Google Scholar 

  • Bicking, J.B., Robb, C.M., Kwong, S.F., Cragoe, E.J., Jr. 1967. Pyrazine diuretics. III. 5- and 6-Alkyl,-cycloalkyl and-aryl derivatives of N-amidino-3-amino-pyrazinecarboxamides.J. Med. Chem. 10:598–602

    PubMed  Google Scholar 

  • Christensen, O., Bindslev, N. 1982. Fluctuation analysis of short-circuit current in a warm-blooded sodium-retaining epithelium: Site current, density, and interaction with triamterene.J. Membrane Biol. 65:19–30

    Google Scholar 

  • Cobb, M.H., Scott, W.N. 1981. Irreversible inhibition of sodium transport by the toad urinary bladder following photolysis of amiloride analogs.Experientia 37:68–69

    Google Scholar 

  • Cragoe, E.J., Jr. 1979. Structure activity relationships in the amiloride series.In: Amiloride and Epithelial Sodium Transport. A.W. Cuthbert, G.M. Fanelli, Jr. and A. Scriabine, editors. pp. 1–20. Urban and Schwarzenberg, Baltimore and Munich

    Google Scholar 

  • Cragoe, E.J., Jr., Bicking, J.B. 1971. (3-Amino-pyrazinoyl)-sulfamides and their preparation. U.S. Patent 3,573,305, March 10

  • Cragoe, E.J., Jr., Shepard, K.L. 1971. Process for the preparation of 3-aminopyrazinoylureas. U.S. Patent 3,575,975, April 20

  • Cragoe, E.J., Jr., Woltersdorf, O.W., Jr. 1978. (3-Amino-5-substituted-6-fluoropyrazinoyl or pyrazinamido)-guanidines and their derivatives bearing substituents on the guanidino nitrogens. U.S. Patent 4,087,526, May 2

  • Cragoe, E.J., Jr., Woltersdorf, O.W., Jr., Bicking, J.B., Kwong, S.F., Jones, J.H. 1967. Pyrazine diuretics. II. N-Amidino-3-amino-5-substituted 6-halopyrazinecarboxyamides.J. Med. Chem. 10:66–75

    PubMed  Google Scholar 

  • Cragoe, E.J., Jr., Woltersdorf, O.W., Jr., Bock, M.G. 1979. Pyrazine-2-carbonyloxyguanidines. U.S. Patent 4,145,551, March 20

  • Cuthbert, A.W. 1976. Importance of guanidinium groups for blocking sodium channels in epithelia.Mol. Pharmacol. 12:945–957

    PubMed  Google Scholar 

  • Cuthbert, A.W. 1981. Sodium entry step in transporting epithelia: Results of ligand-binding studies.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 181–195. Raven, New York

    Google Scholar 

  • Cuthbert, A.W., Fanelli, G.M. 1978. Effects of some pyrazine carboxamides on sodium transport in frog skin.Br. J. Pharmacol. 63:139–149

    PubMed  Google Scholar 

  • Cuthbert, A.W., Fanestil, D.D., Herrera, F.C., Pryn, S.J. 1982. Irreversible inhibition of epithelial sodium channels by ultraviolet irradiation.Br. J. Pharmacol. 77:431–442

    PubMed  Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1976. Characteristics of the entry process for sodium in transporting epithelia as revealed with amiloride.J. Physiol. (London) 255:587–604

    Google Scholar 

  • Frehland, E., Hoshiko, T., Machlup, S. 1983. Competitive blocking of apical Na channels in epithelia.Biochim. Biophys. Acta 732:636–646

    PubMed  Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Garty, H., Lindemann, B. 1984. Feedback inhibition of sodium uptake in K-depolarized toad urinary bladder.Biochim. Biophys. Acta 771:89–98

    PubMed  Google Scholar 

  • Henrich, M., Lindemann, B. 1984. Voltage dependence of channel currents and of channel densities in the apical membrane of toad urinary bladder.In: Intestinal Absorption and Secretion. E. Skadhauge and K. Heintze, editors. pp. 209–220. MTP, Lancaster

    Google Scholar 

  • Hoshiko, T. 1978. Power density spectra of frog skin. Potential, current and admittance functions during patch clamp.J. Membrane Biol.Special Issue:121–134

    Google Scholar 

  • Jones, J.H., Cragoe, E.J., Jr. 1968. Pyrazine diuretics. V. N-Amidino-3-aminopyrazinecarboxamidines and analogues 2,4-diaminopteridimes.J. Med. Chem. 11:322

    PubMed  Google Scholar 

  • King, R.W., Burgen, A.S.V. 1976. Kinetic aspects of structure-activity relations: The binding of sulphonamides by carbonic anhydrase.Proc. R. Soc. London B 193:107–125

    Google Scholar 

  • Li, J.H.-Y., Cragoe, E.J., Jr., Lindemann, B. 1981. Dual attachment of high potency amiloride analogues to epithelial Na-channels. VIIth International Biophysics Congress, Mexico City, p. 200

  • Li, J.H.-Y., DeSousa, R.C. 1979. Inhibitory and stimulatory effects of amiloride analogues on sodium transport in frog skin.J. Membrane Biol. 46:155–169

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1979. Blockage of epithelial Na-channels by amiloride analogues: Dependence of rate constants on drug structure.Pfluegers Arch. 379:R18

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1981. pH dependence of apical Na transport in frog skin.In: Advances in Physiological Sciences. J. Salanki, editor. pp. 151–155. Pergamon, London

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1983a. Chemical stimulation of Na transport through amiloride blockable channels of frog skin epithelium.J. Membrane Biol. 75:179–182

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1983b. Competitive blocking of epithelial Na channels by organic cations: The relationship between macroscopic and microscopic inhibition constants.J. Membrane Biol. 76:235–251

    Google Scholar 

  • Lindemann, B. 1984. Fluctuation analysis of sodium channels in epithelia.Annu. Rev. Physiol. 46:497–515

    PubMed  Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    PubMed  Google Scholar 

  • Lindemann, B., Van Driessche, W. 1978. The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1, pp. 155–178. Raven, New York

    Google Scholar 

  • Lindemann, B., Vôute, C. 1976. Structure and function of the epidermis.In: Frog Neurobiology. R. Llinas and W. Precht, editors. pp. 169–210. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  • McDaniel, D.H., Brown, H.C. 1958. An extended table of Hammett substituent constants based on the ionisation of substituted benzoic acids.J. Org. Chem. 23:420–427

    Google Scholar 

  • Palmer, L.G. 1982. Na-transport and flux ratio through apical Na-channels in toad bladder.Nature (London) 297:688–690

    Google Scholar 

  • Rowbotham, J.B., Schaefer, T. 1974. Proton magnetic resonance study of intramolecular hydrogen bonding in halophenols.Can. J. Chem. 52:3037–3041

    Google Scholar 

  • Shepard, K.L., Halczenko, W., Cragoe, E.J., Jr. 1969. 3,5-Diamino-6-chloropyrazinecarboxylic acid “active esters” and their reactions.Tetrahedron Lett. 54:4757–4760

    Google Scholar 

  • Shepard, K.L., Halczenko, W., Cragoe, E.J., Jr. 1977. Activated esters of substituted pyrazinecarboxylic acids.J. Heterocycl. Chem. 13:1219–1224

    Google Scholar 

  • Shepard, K.L., Mason, J.W., Woltersdorf, O.W., Jr., Jones, J.H., Cragoe, E.J., Jr. 1969. Pyrazine diuretics, VI. (Pyrazinecarboxamido)guanidines.J. Med. Chem. 12:280–285

    PubMed  Google Scholar 

  • Smith, R.L., Cochran, D.W., Gund, P., Cragoe, E.J., Jr. 1979. Proton, carbon-13, and nitrogen-15 nuclear magnetic resonance and CNDO/2 studies on the tautomerism and conformation of amiloride, a novel acylguanidine.J. Am. Chem. Soc. 101:191–201

    Google Scholar 

  • Ussing, H.H. 1949. The active ion transport through the isolated frog skin in the light of tracer studies.Acta Physiol. Scand. 17:1–37

    Google Scholar 

  • Van Driessche, W., Lindemann, B. 1979. Concentration dependence of currents through single sodium-selective pores in frog skin.Nature (London) 282:519–520

    Google Scholar 

  • Zeiske, W., Lindemann, B. 1975. Blockage of Na-channels in frog skin by titration with protons and by chemical modification of COO-groups.Pfluegers Arch. 355:R71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.H.Y., Cragoe, E.J. & Lindemann, B. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: I. Pyrazine-ring modifications. J. Membrain Biol. 83, 45–56 (1985). https://doi.org/10.1007/BF01868737

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868737

Key Words

Navigation