Skip to main content
Log in

Transport mechanism of hydrophobic ions through lipid bilayer membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Evidence is presented that the transport of lipid-soluble ions through bilayer membranes occurs in three distinct steps: (1) adsorption to the membranesolution interface; (2) passage over an activation barrier to the opposite interface; and (3) desorption into the aqueous solution. Support for this mechanism comes from a consideration of the potential energy of the ion, which has a minimum in the interface. The formal analysis of the model shows that the rate constants of the individual transport steps can be determined from the relaxation of the electric current after a sudden change in the voltage. Such relaxation experiments have been carried out with dipicrylamine and tetraphenylborate as permeable ions. In both cases the rate-determining step is the jump from the adsorption site into the aqueous phase. Furthermore, it has been found that with increasing ion concentration the membrane conductance goes through a maximum. In accordance with the model recently developed by L. J. Bruner, this behavior is explained by a saturation of the interface, which leads to a blocking of the conductance at high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bruner L. J. 1970. Blocking phenomena and charge transport through membranes.Biophysik 6:241.

    Google Scholar 

  • Ciani, S., Eisenman, G., Szabo, G. 1969. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes.J. Membrane Biol. 1:1.

    Google Scholar 

  • Gaboriaud, R. 1966. Sur le comportement des acides non chargés dans les milieux eau-méthanol.Compt. Rend. Acad. Sci. (Paris) C 263:911.

    Google Scholar 

  • Grunwald, E., Baughman, G., Kohnstam, G. 1960. The solvation of electrolytes in dioxane-water mixtures, as deduced from the effect of solvent change on the standard partial molar free energy.J. Amer. Chem. Soc. 82:5801.

    Google Scholar 

  • Läuger, P., Lesslauer, W., Marti, E., Richter, J. 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20.

    PubMed  Google Scholar 

  • Le Blanc, Jr., O. H. 1969. Tetraphenylborate conductance through lipid bilayer membranes.Biochim. Biophys. Acta 193:350.

    PubMed  Google Scholar 

  • Liberman, E. A., Topaly, V. P. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biochim. Biophys. Acta 163:125.

    PubMed  Google Scholar 

  • —— 1969. Permeability of bimolecular phospholipid membranes for lipid-soluble ions.Biophysics 14:477.

    Google Scholar 

  • Mueller, P., Rudin, D. O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398.

    PubMed  Google Scholar 

  • Neumcke, B. 1970. Ion flux across lipid bilayer membranes with charged surfaces.Biophysik 6:231.

    PubMed  Google Scholar 

  • — 1971. Diffusion polarization at lipid bilayer membranes.Biophysik 7:95.

    Google Scholar 

  • —, Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations.Biophys. J. 9:1160.

    PubMed  Google Scholar 

  • —— 1970. Space charge-limited conductance in lipid bilayer membranes.J. Membrane Biol. 3:54.

    Google Scholar 

  • Robles, E. C., Van den Berg, D. 1969. Synthesis of lecithins by acylation of O-(sn-glycero-3-phosphoryl) choline with fatty acid anhydrides.Biochim. Biophys. Acta 187:520.

    PubMed  Google Scholar 

  • Skinner, J. F., Fuoss, R. M. 1964. Conductance of triisoamylbutylammonium and tetraphenylboride.J. Phys. Chem. 68:1882.

    Google Scholar 

  • Walz, D., Bamberg, E., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes. I. Ion injection.Biophys. J. 9:1150.

    PubMed  Google Scholar 

  • Zwolinsky, B. J., Eyring, H., Reese, C. 1949. Diffusion and membrane permeability.J. Phys. Colloid Chem. 53:1426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketterer, B., Neumcke, B. & Läuger, P. Transport mechanism of hydrophobic ions through lipid bilayer membranes. J. Membrain Biol. 5, 225–245 (1971). https://doi.org/10.1007/BF01870551

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870551

Keywords

Navigation