Skip to main content
Log in

Voltage dependence of Na channel blockage by amiloride: Relaxation effects in admittance spectra

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Amiloride, present in the mucosal solution, causes the appearance of a distinct additional dispersion in the admittance spectrum of the apical membrane of toad urinary bladder. The parameters of this dispersion (characteristic frequency. amplitude) change with amiloride concentration and with membrane voltage. They allow the calculation of the overall rate constants for Na channel blockage by the positively charged form of amiloride. and the voltage dependence of these rate constants. The on-rate of blockage increases and the off-rate decreases when the membrane surface to which cationic amiloride has access, is made more positive. This result is suggestive of a blocking model where the cationic amidino group of amiloride, depending on its charge, senses 10 to 13% of the membrane voltage while invading the channel entrance by a single-step process, and rests at an electrical distance corresponding to 24 to 30% of membrane voltage while occupying the blocking position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benos, D.J. 1982. Amiloride: A molecular probe of sodium transport in tissues and cells.Am. J. Physiol. 242:C131-C145

    Google Scholar 

  2. Benos, D.J., Hyde, B.A., Latorre, R. 1983. Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin.J. Gen. Physiol. 81:667–685

    PubMed  Google Scholar 

  3. Benos, D.J., Mandel, L.J., Balaban, R.S. 1979. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia.J. Gen. Physiol. 73:307–326

    PubMed  Google Scholar 

  4. Benos, D.J., Mandel, L.F., Simon, S.A. 1980. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: Evidence for separate sites.J. Membrane Biol. 56:149–158

    Google Scholar 

  5. Benos, D.J., Watthey, J.W.H. 1981. Inferences on the nature of the apical sodium entry site in frog skin epithelium.J. Pharmacol. Exp. Ther. 219:481–488

    PubMed  Google Scholar 

  6. Binghma, R.C., Dewar, M.J.S., Lo, D.H. 1975. Ground states of molecules. XXV. MINDO/3. An improved version of the MINDO semiempirical SCF-MO method.J. Am. Chem. Soc. 97:1285–1293

    Google Scholar 

  7. Clausen, C., Lewis, S.A., Diamond, J.M. 1979. Impedance analysis of a tight epithelium using a distributed resistance model.Biophys. J. 26:291–318

    PubMed  Google Scholar 

  8. Cuthbert, A.W. 1976. Importance a guanidinium groups for blocking sodium channels in epithelia.Mol. Pharmacol. 12:945–957

    PubMed  Google Scholar 

  9. Eyring, H., Lumry, R., Woodbury, J.W. 1949. Some applications of modern rate theory to physiological systems.Rec. Chem. Prog. 10:100–114

    Google Scholar 

  10. Fletcher, R., Powell, M.J.D. 1963. A rapidly convergent descent method for minimization.Computer J. 6:163–168

    Google Scholar 

  11. Frehland, E., Hoshiko, T., Machlup, S. 1983. Competitive blocking of apical sodium channels in epithelia.Biochim. Biophys. Acta 732:636–646

    PubMed  Google Scholar 

  12. Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  13. Gögelein, H., Van Driessche, W. 1981. Capacitive and inductive low frequency impedances ofNecturus gallbladder epithelium.Pfluegers Arch. 389:105–113

    Google Scholar 

  14. Hamilton, K.L., Eaton, D.C. 1984. Single channel conductance events from the amiloride-sensitive Na conductance of epithelial cells.Fed. Proc. 43:628

    Google Scholar 

  15. Hansen, U.-P., Tittor, J., Gradmann, D. 1983. Interpretation of current-voltage relationships for “active” ion transport systems: II. Nonsteady-state reaction-kinetic analysis of Class-I mechanisms with one slow time-constant.J. Membrane Biol. 75:141–169

    Google Scholar 

  16. henrich, M., Lindemann, B. 1984. Voltage dependence of channel currents and of channel densities in the apical membrane of toad urinary bladder.In: Intestinal Absorption and Secretion. E. Skadhauge and K. Heintze, editors. pp. 209–220. MTP, Lancaster

    Google Scholar 

  17. Kottra, G., Frömter, E. 1984. Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. I. Experimental procedures.Pfluegers Arch. 402:409–420

    Google Scholar 

  18. Kottra, G., Frömter, E. 1984. Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. II. Test of model circuits and quantification of results.Pfluegers Arch. 402:421–432

    Google Scholar 

  19. Li, J.H.-Y., Cragoe, E.J., Jr., Lindemann, B. 1985. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels. I. Pyrazine-ring modifications.J. Membrane Biol. 83:45–56

    Google Scholar 

  20. Li, J.H.-Y., Lindemann, B. 1983. Competitive blocking of epithelial sodium channels by organic cations: The relationship between macroscopic and microscopic inhibition constants.J. Membrane Biol. 76:235–251

    Google Scholar 

  21. Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  22. Lindemann, B. 1980. The beginning of fluctuation analysis of epithelial ion transport.J. Membrane Biol. 54:1–11

    Google Scholar 

  23. Lindemann, B. 1984. Fluctuation analysis of sodium channels in epithelia.Annu. Rev. Physiol. 46:497–515

    PubMed  Google Scholar 

  24. Lindemann, B., Van Driessche, W. 1977. Sodium specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    PubMed  Google Scholar 

  25. Lindemann, B., Warncke, J. 1985. Dependence of the blocking rate constants of amiloride on the mucosal Na concentration.Pfluegers Arch. 403:R13

    Google Scholar 

  26. Mauro, A., Conti, F., Schor, R. 1970. Subthreshold behavior and phenomenological impedance of the squid giant axon.J. Gen. Physiol. 55:497–523

    Google Scholar 

  27. Olans, L., Sariban-Sohraby, S., Benos, D.J. 1984. Saturation behavior of single amiloride-sensitive Na channels in planar lipid bilayers.Biophys. J. 46:831–835

    PubMed  Google Scholar 

  28. Palmer, L.G. 1982. Na transport and flux ratio through apical Na channels in toad bladder.Nature (London) 297:688–690

    Google Scholar 

  29. Palmer, L.G. 1984. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder.J. Membrane Biol. 80:153–165

    Google Scholar 

  30. Palmer, L.G. 1985. Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder.J. Membrane Biol. (in press)

  31. Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Currentvoltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  32. Park, C.S., Kipnowski, J., Fanestil, D.D. 1983. Role of carboxyl group in Na-entry at apical membrane of toad urinary bladder.Am. J. Physiol. 245:F707-F715

    PubMed  Google Scholar 

  33. Parlin, B., Eyring, H. 1954. Membrane permeability and electrical potential.In: Ion Transport across Membranes. H.T. Clarke, editor. pp. 103–118. Academic, New York

    Google Scholar 

  34. Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., Benos, D. 1984. Amiloride sensitive epithelial Na channels reconstituted into planar lipid bilayer membranes.Nature (London) 308:80–82

    Google Scholar 

  35. Smith, P.G. 1971. The low-frequency electrical impedance of the isolated frog skin.Acta Physiol. Scand. 81:355–366

    Google Scholar 

  36. Smith, R.L., Cochran, D.W., Gund, P., Cragoe, E.J., Jr. 1979. Proton, carbon-13, and nitrogen-15 nuclear magnetic reasonance and CNDO/2 studies on the tautomerism and conformation of amiloride, a novel acylguanidine.J. Am. Chem. Soc. 101:191–201

    Google Scholar 

  37. Strobel, H. 1968. Systemanalyse mit determinierten Testsignalen. VEB-Verlag, Berlin

    Google Scholar 

  38. Tittor, J., Hansen, U.-P., Gradmann, D. 1983. Impedance of the electrogenic Cl pump inAcetabularia: Electrical frequency entrainments, voltage-sensitivity, and reaction kinetic interpretation.J. Membrane Biol. 75:129–139

    Google Scholar 

  39. Warncke, J., Lindemann, B. 1979. A sinewave-burst method to obtain impedance spectra of transporting epithelia during voltage clamp.Pfluegers Arch. 382:R12

    Google Scholar 

  40. Warncke, J., Lindemann, B. 1985. Voltage dependence of Na channel blockage by amiloride: Admittance relaxation spectra.Pfluegers Arch. 403:R13

    Google Scholar 

  41. Zeiske, W., Lindemann, B. 1975. Blockage of Na channels in frog skin by titration with protons and by chemical modification of COO groups.Pfluegers Arch. 355:R71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warncke, J., Lindemann, B. Voltage dependence of Na channel blockage by amiloride: Relaxation effects in admittance spectra. J. Membrain Biol. 86, 255–265 (1985). https://doi.org/10.1007/BF01870605

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870605

Key Words

Navigation