Skip to main content
Log in

Autophagy and other vacuolar protein degradation mechanisms

  • Multi-Author Review
  • Proteases as Biological Regulators
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Autophagic degradation of cytoplasm (including protein, RNA etc.) is a non-selective bulk process, as indicated by ultrastructural evidence and by the similarity in autophagic sequestration rates of various cytosolic enzymes with different half-lives. The initial autophagic sequestration step, performed by a poorly-characterized organelle called a phagophore, is subject tofeedback inhibition by purines and amino acids, the effect of the latter being potentiated by insulin and antagonized by glucagon. Epinephrine and other adrenergic agonists inhibit autophagic sequestration through a prazosin-sensitive α1-adrenergic mechanism. The sequestration is also inhibited by cAMP and by protein phosphorylation as indicated by the effects of cyclic nucleotide analogues, phosphodiesterase inhibitors and okadaic acid.

Asparagine specifically inhibits autophagic-lysosomal fusion without having any significant effects on autophagic sequestration, on intralysosomal degradation or on the endocytic pathway. Autophaged material that accumulates in prelysosomal vacuoles in the presence of asparagine is accessible to endocytosed enzymes, revealing the existence of an amphifunctional organelle, the amphisome. Evidence from several cell types suggests that endocytosis may be coupled to autophagy to a variable extent, and that the amphisome may play a central role as a collecting station for material destined for lysosomal degradation.

Protein degradation can also take place in a ‘salvage compartment’ closely associated with the endoplasmic reticulum (ER). In this compartment unassembled protein chains are degraded by uncharacterized proteinases, while resident proteins roturn to the ER and assembled secretory and membrane proteins proceed through the Golgi apparatus. In thetrans-Golgi network some proteins are proteolytically processed by Ca2+-dependent proteinases; furthermore, this compartment sorts proteins to lysosomes, various membrane domains, endosomes or secretory vesicles/granules. Processing of both endogenous and exogenous proteins can occurr in endosomes, which may play a particularly important role in antigen processing and presentation. Proteins in endosomes or secretory compartments can either be exocytosed, or channeled to lysosomes for degradation. The switch mechanisms which decide between these options are subject to bioregulation by external agents (hormones and growth factors), and may play an important role in the control of protein uptake and secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achkar, C., Gong, Q., Frankfater, A., and Bajkowski, A.S., Differences in targeting and secretion of cathepsins B and L by BALB/3T3 fibroblasts and Moloney murine sarcoma virus-transformed BALB/3T3 fibroblasts. J. biol. Chem.265 (1990) 13650–13654.

    Article  CAS  PubMed  Google Scholar 

  2. Ahlberg, J., and Glaumann, H., Autophagy, microautophagy and crinophagy as separate pathways for degradation of endogeneous proteins. Cienc. Biol. (Portugal)11 (1986) 85–91.

    CAS  Google Scholar 

  3. Ahlberg, J., Marzella, L., and Glaumann, H., Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab. Invest.47 (1982) 523–532.

    CAS  PubMed  Google Scholar 

  4. Amara, J.F., Lederkremer, G., and Lodish, H.F., Intracellular degradation of unassembled asialoglycoprotein receptor subunits: A pre-Golgi, nonlysosomal endoproteolytic cleavage. J. Cell Biol.109 (1989) 3315–3324.

    Article  CAS  PubMed  Google Scholar 

  5. Amenta, J.S., Sargus, M.J., and Baccino, F.M., Effect of microtubular or translational inhibitors on general cell protein degradation. Biochem. J.168 (1977) 223–227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Amenta, J.S., Sargus, M.J., and Brocher, S.C., Protein synthesis and degradation in growth regulation in rat embryo fibroblasts: role of fast-turnover and slow-turnover protein. J. cell. Physiol.105 (1980) 51–61.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, R.G.W., and Pathak, R.K., Vesicles and cisternae and thetrans Golgi apparatus of human fibroblasts are acidic compartments. Cell40 (1985) 635–643.

    Article  CAS  PubMed  Google Scholar 

  8. Auteri, S., Okada, A., Bochaki, V., and Dice, J.F., Regulation of intracellular protein degradation in IMR-90 human diploid fibroblasts. J. cell. Physiol.115 (1983) 167–174.

    Article  CAS  PubMed  Google Scholar 

  9. Baccino, F.M., Tessitore, L., and Bonelli, G., Control of protein degradation and growth phase in normal and neoplastic cells. Toxic. Path.12 (1984) 281–287.

    Article  CAS  Google Scholar 

  10. Backer, J.M., Bourret, L., and Dice, J.F., Regulation of catabolism of microinjected ribonuclease A requires the amino-terminal 20 amin acids. Proc. natl Acad. Sci. USA80 (1983) 2166–2170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Backer, J.M., and Dice, J.F., Covalent linkage of ribonuclease S-peptide to microinjected proteins causes their intracellular degradation to be enhanced during serum withdrawal. Proc. natl Acad. Sci. USA83 (1986) 5830–5834.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Backer, J.M., Kahn, C.R., and White, M.F., The dissociation and degradation of internalized insulin occur in the endosomes of rat hepatoma cells. J. biol. Chem.265 (1990) 14828–14835.

    Article  CAS  PubMed  Google Scholar 

  13. Bakke, O., and Dobberstein, B., MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell63 (1990) 707–716.

    Article  CAS  PubMed  Google Scholar 

  14. Balavoine, S., Feldmann, G., and Lardeux, B., Rates of RNA degradation in isolated rat hepatocytes: Effects of amino acids and inhibitors of lysosomal function. Eur. J. Biochem.189 (1990) 617–623.

    Article  CAS  PubMed  Google Scholar 

  15. Ballard, F.J., Knowles, S.E., Wong, S.S.C., Bodner, J.B., Wood, C.M., and Gunn, J.M., Inhibition of protein breakdown in cultured cells is a consistent response to growth factors. FEBS Lett.114 (1980) 209–212.

    Article  CAS  PubMed  Google Scholar 

  16. Barile, F.A., Guzuowski, D.E., Ripley, C., Siddiqi, Z.-A., and Bienkowski, R.S., Ammonium chloride inhibits basal degradation of newly synthesized collagen in human fetal lung fibroblasts. Archs Biochem. Biophys.276 (1990) 125–131.

    Article  CAS  Google Scholar 

  17. Barile, F.A., Siddiqi, Z.-E.-A., Ripley-Rouzier, C., and Bienkowski, R.S., Effects of puromycin and hydroxynorvaline on net production and intracellular degradation of collagen in human fetal lung fibroblasts. Archs Biochem. Biophys.270 (1989) 294–301.

    Article  CAS  Google Scholar 

  18. Baxter, G. C., and Stanners, C. P., The effectein degradation on cellular growth characteristics. J. cell. Physiol.96 (1978) 139–146.

    Article  CAS  PubMed  Google Scholar 

  19. Berg, T., Ford, T., Kindberg, G., Blomhoff, R., and Drevon, C., Intracellular degradation of asialoglycoproteins in hepatocytes starts in a subgroup of lysosomes. Exp. Cell Res.156 (1985) 570–574.

    Article  CAS  PubMed  Google Scholar 

  20. Besterman, J.M., Airhart, J.A., Low, R.B., and Rannels, D.E., Pinocytosis and intracellular degradation of exogenous protein: modulation by amino acids. J. Cell Biol.96 (1983) 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  21. Bienkowsky, R.S., Curran, S.F., and Berg, R.A., Kinetics of intracellular degradation of newly synthesized collagen. Biochemistry25 (1986) 2455–2459.

    Article  Google Scholar 

  22. Blum, J.S., Diaz, R., Diment, S., Fiani, M., Mayorga, L., Rodman, J.S., and Stahl, P.D., Proteolytic processing in endosomal vesicles. Cold Spring Harbor Symp. quant. Biol.54 (1989) 287–292.

    Article  CAS  Google Scholar 

  23. Bohley, P., Intracellular proteolysis, in: New Comprehensive Biochemistry, vol. 16: Hydrolytic Enzymes, pp. 307–332. Eds A. Neuberger and K. Brocklehurst. Elsevier Science, Publishers, Amsterdam 1987.

    Google Scholar 

  24. Bolender, R.P., and Weibel, E.R., A morphometric study of the removal of phenoparbital-induced membranes from hepatocytes after cessation of treatment. J. Cell Biol.56 (1973) 746–761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bowser, R., and Murphy, R.F., Kinetics of hydrolysis of endocytosed substrates by mammalian cultured cells: Early introduction of lysosomal enzymes into the endocytic pathway. J. cell. Physiol.143 (1990) 110–117.

    Article  CAS  PubMed  Google Scholar 

  26. Braun, M., Waheed, A., and Von Figura, K., Lysosomal acid phosphatase is transported to lysosomes via the cell surface. EMBO J.8 (1989) 3633–3640.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Briozzo, P., Morisset, M., Capony, F., Rougeot, C., and Rochefort, H., In vitro degradation of extracellular matrix with Mr52.000 cathepsin D secreted by breast cancer cells. Cancer Res.48 (1988) 3688–3692.

    CAS  PubMed  Google Scholar 

  28. Brodsky, F.M., Immunology: The invariang dating service. Nature348 (1990) 581–582.

    Article  CAS  PubMed  Google Scholar 

  29. Cain, C.C., Sipe, D.M., and Murphy, R.F., Regulation of endocytic pH by the Na+, K+-ATPase in living cells. Proc. natl Acad. Sci. USA86 (1989) 544–548.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Capony, F., Rougeot, C., Cavailles, V., and Rochefort, H., Estradiol increases the secretion by MCF7 cells of several lysosomal pro-enzymes. Biochem. biophys. Res. Commun.171 (1990) 972–978.

    Article  CAS  PubMed  Google Scholar 

  31. Caro, L.H.P., Plomp, P.J.A.M., Wolvetang, E.J., Kerkhof, C., and Meijer, A.J., 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur. J. Biochem.175 (1988) 325–329.

    Article  CAS  PubMed  Google Scholar 

  32. Chao, H.H.-J., Waheed, A., Pohlmann, R., Hille, A., and von Figura, K., Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes. EMBO J.9 (1990) 3507–3513.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chen, C., Bonifacino, J.S., Yuan, L.C., and Klausner, R.D., Selective degradation of T cell antigen receptor chains retained in a pre-Golgi compartment. J. Cell Biol.107 (1988) 2149–2161.

    Article  CAS  PubMed  Google Scholar 

  34. Chiang, H.-L., Terlecky, S.R., Plant, C.P., and Dice, J.F., A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science246 (1989) 382–385.

    Article  CAS  PubMed  Google Scholar 

  35. Clarke, B.L., and Weigel, P.H., Differential effects of leupeptin, monensin and colchicine on ligand degradation mediated by the two asialoglycoprotein receptor pathways in isolated rat hepatocytes. Biochem. J.262 (1989) 277–284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cupp, M., Bensadoun, A., and Melford, K., Heparin decreases the degradation rate of lipoprotein lipase in adipocytes. J. biol. Chem.262 (1987) 6383–6388.

    Article  CAS  PubMed  Google Scholar 

  37. Dahms, N.M., Lobel, P., and Kornfeld, S., Mannose 6-phosphate receptors and lysosomal enzyme targeting. J. biol. Chem.264 (1989) 12115–12118.

    Article  CAS  PubMed  Google Scholar 

  38. Davidson, H.W., Rhodes, C.J., Hutton, J.C., Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic β cell via two distinct site-specific endopeptidases. Nature333 (1988) 93–96.

    Article  CAS  PubMed  Google Scholar 

  39. De Curtis, L., and Simons, K., Dissection of Semliki Forest virus glycoprotein delivery from the trans-Golgi network to the cell surface in permeabilized BHK cells. Proc. natl Acad. Sci. USA85 (1988) 8052–8056.

    Article  PubMed Central  PubMed  Google Scholar 

  40. de Duve, G., and Wattiaux, R., Functions of lysosomes. A. Rev. Physiol.28 (1966) 435–492.

    Article  Google Scholar 

  41. Desbuquois, B., Janicot, M., and Dupuis, A., Degradation of insulin in isolated liver endosomes is functionally linked to ATP-dependent endosomal acidification. Eur. J. Biochem.193 (1990) 501–512.

    Article  CAS  PubMed  Google Scholar 

  42. Dice, J.F., Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends biochem. Sci.15 (1990) 305–309.

    Article  CAS  PubMed  Google Scholar 

  43. Dice, J.F., and Chiang, H.-L., Peptide signals for protein degradation within lysosomes. Biochem. Soc. Symp.55 (1989) 45–55.

    CAS  PubMed  Google Scholar 

  44. Diment, S., Leech, M.S., and Stahl, P.D., Cathepsin D is membrane-associated in macrophage endosomes. J. biol. Chem.263 (1988) 6901–6907.

    Article  CAS  PubMed  Google Scholar 

  45. Diment, S., Martin, K.J., and Stahl, P.D., Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins. J. biol. Chem.264 (1989) 13 403–13 406.

    Article  CAS  Google Scholar 

  46. Diment, S., and Stahl, P., Macrophage endosomes contain proteases which degrade endocytosed protein ligands. J. biol. Chem.260 (1985) 15311–15317.

    Article  CAS  PubMed  Google Scholar 

  47. Doherty, J.-J., II, Kay, D.G., Lai, W.H., Posner, B.I., and Bergeron, J.J.M., Selective degradation of insulin within rat liver endosomes. J. Cell Biol.110 (1990) 35–42.

    Article  CAS  PubMed  Google Scholar 

  48. Dong, J., Prence, E.M., and Sahagian, G.G., Mechanism for seletive secretion of a lysosomal protease by transformed mouse fibroblasts. J. biol. Chem.264 (1989) 7377–7383.

    Article  CAS  PubMed  Google Scholar 

  49. Dunn, W.A., Studies on the mechanisms of autophagy: Formation of the autophagic vacuole. J. Cell Biol.110 (1990) 1923–1933.

    Article  PubMed  Google Scholar 

  50. Dunn, W.A., Studies on the mechanisms of autophagy: Maturation of the autophagic vacuole. J. Cell Biol.110 (1990) 1935–1945.

    Article  CAS  PubMed  Google Scholar 

  51. Fong, L.G., Fong, T.A.T., and Cooper, A.D., Inhibition of mouse macrophage degradation of acetyl-low density lipoprotein by interferon-gamma. J. biol. Chem.265 (1990) 11751–11760.

    Article  CAS  PubMed  Google Scholar 

  52. Fuchs, R., Schmid, S., and Mellman, I., A possible role for Na+, K+-ATPase in regulating ATP-dependent endosome acidification. Proc. natl Acad. Sci. USA86 (1989) 539–543.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gal, S., and Gottesman, M. M., The major excreted protein of transformed, tumor promoter and PDGF-treated mouse fibroblasts is an acid-activated protease. J. Cell Biol.

  54. Ghoda, L., Phillips, M.A., Bass, K.E., Wang, C.C., and Coffino, P., Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation. J. biol. Chem.265 (1990) 11823–11826.

    Article  CAS  PubMed  Google Scholar 

  55. Gordon, P.B., Holen, I., and Seglen, P.O., Effects of adrenergic agonists and antagonists on autophagic activity in isolated rat liver cells. Biomed. biochim. Acta50 (1991) 383–387.

    CAS  PubMed  Google Scholar 

  56. Gordon, P.B., Høyvik, H., and Seglen, P.O., Sequestration and hydrolysis of electroinjected[14C]lactose as a means of investigating autophagosome-lysosome fusion in isolated rat hepatocytes, in: Intracellular Protein Catabolism, pp. 475–477. Eds E.A. Khairallah, J.S. Bond and J.W.C. Bird, Alan R. Liss, Inc., New York 1985.

    Google Scholar 

  57. Gordon, P.B., Høyvik, H., and Seglen, P.O., Degradation of autophaged sucrose by endocytosed invertase: evidence for prelysosomal as well as lysosomal convergence of autophagic and endocytic pathways. Manuscript in preparation.

  58. Gordon, P.B., Kisen, G.Ø., Kovács, A.L., and Seglen, P.O., Experimental characterization of the autophagic-lysosomal pathway in isolated rat hepatocytes. Biochem. Soc. Symp.55 (1989) 129–143.

    CAS  PubMed  Google Scholar 

  59. Gordon, P.B., Kovács, A.L., and Seglen, P.O., Temperature-dependence of protein degradation, autophagic sequestration and mitochondrial sugar uptake in rat hepatocytes. Biochim. biophys. Acta929 (1987) 128–133.

    Article  CAS  PubMed  Google Scholar 

  60. Gordon, P.B., and Seglen, P.O., Autophagic sequestration of[14C]surcrose, introduced into isolated rat hepatocytes by electropermeabilization. Exp. Cell Res.142 (1982) 1–14.

    Article  CAS  PubMed  Google Scholar 

  61. Gordon, P.B., and Seglen, P.O., 6-Substituted purines: a novel class of inhibitors of endogenous protein degradation in isolated rat hepatocytes. Archs Biochem. Biophys.217 (1982) 282–294.

    Article  CAS  Google Scholar 

  62. Gordon, P. B., and Seglen, P. O., Use of electrical methods in the study of hepatocytic autophagy. Biomed. biochim. Acta45 (1986) 1635–1645.

    CAS  PubMed  Google Scholar 

  63. Gordon, P. B., and Seglen, P. O., Prelysosomal convergence of autophagic and endocytic pathways. Biochem. biophys. Res. Commun.151 (1988) 40–47.

    Article  CAS  PubMed  Google Scholar 

  64. Gordon, P. B., Tolleshaug, H., and Seglen, P. O., Autophagic sequestration of[14C]sucrose introduced into isolated rat hepatocytes by electrical and non-electrical methods. Exp. Cell Res.160 (1985) 449–458.

    Article  CAS  PubMed  Google Scholar 

  65. Gordon, P. B., Tolleshaug, H., and Seglen, P. O., Use of digitonin extraction to distinguish between autophagic-lysosomal sequestration and mitochondrial uptake of[14C]sucrose in hepatocytes. Biochem. J.,232 (1985) 773–780.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Gorman, R. M., and Poretz, R. D., Resolution of multiple endosomal compartments associated with the internalization of epidermal growth factor and transferrin. J. cell. Physiol.131 (1987) 158–164.

    Article  CAS  PubMed  Google Scholar 

  67. Grant, K. I., Casciola, L. A. F., Coetzee, G. A., Sanan, D. A., Gevers, W., and van der Westhuyzen, D. R., Ammonium chloride causes reversible inhibition of low density lipoprotein receptor recycling and accelerates receptor degradation. J. biol. Chem.265 (1990) 4041–4047.

    Article  CAS  PubMed  Google Scholar 

  68. Griffiths, G., Hoflack, B., Simons, K., Mellman, I., and Kornfeld, S., The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell52 (1988) 329–341.

    Article  CAS  PubMed  Google Scholar 

  69. Grinde, B., Effect of amino acid metabolites on lysosomal protein degradation. A regulatory role for kynurenine? Eur. J. Biochem.145 (1984) 623–627.

    Article  CAS  PubMed  Google Scholar 

  70. Grinde, B., and Seglen, P. O., Differential effects of proteinase inhibitors and amines on the lysosomal and non-lysosomal pathways of protein degradation in isolated rat hepatocytes. Biochim. biophys. Acta632 (1980) 73–86.

    Article  CAS  PubMed  Google Scholar 

  71. Guagliardi, L. E., Koppelman, B., Blum, J. S., Marks, M. S., Cresswell, P., and Brodsky, F. M., Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature343 (1990) 133–139.

    Article  CAS  PubMed  Google Scholar 

  72. Hare, J. F., Mechanisms of membrane protein turnover. Biochim. biophys. Acta Rev. Biomembr.1031 (1990) 71–90.

    Article  CAS  Google Scholar 

  73. Hartl, F.-U., Pfanner, N., Nicholson, D. W., and Neupert, W., Mitochondrial protein import. Biochim. biophys. Acta988 (1989) 1–45.

    Article  CAS  PubMed  Google Scholar 

  74. Haystead, T. A. J., Sim, A. T. R., Carling, D., Honnor, R. C., Tsukitani, Y., Cohen, P., and Hardie, D. G., Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature337 (1989) 78–81.

    Article  CAS  PubMed  Google Scholar 

  75. Helminen, H. J., and Ericsson, J. L. E., Ultrastructural studies on prostatic involution in the rat. Mechanism of autophagy in epithelial cells, with special reference to the rough-surfaced endoplasmic reticulum. J. Ultrastr. Res.36 (1971) 708–724.

    Article  CAS  Google Scholar 

  76. Hendil, K. B., Intracellular protein degradation in growing, in density-inhibited, and in serum-restricted fibroblasts cultures. J. cell. Physiol.92 (1977) 353–364.

    Article  CAS  PubMed  Google Scholar 

  77. Hendil, K. B., Autophagy of metabolically inert substances injected into fibroblasts in culture. Exp. Cell Res.135 (1981) 157–166.

    Article  CAS  PubMed  Google Scholar 

  78. Hendil, K. B., Lauridsen, A.-M. B., and Seglen, P. O., Both endocytic and endogenous protein degradation in fibroblasts is stimulated by serum/amino acid deprivation and inhibited by 3-methyladenine. Biochem. J.272 (1990) 577–581.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Henell, F., and Glaumann, H., Participation of lysosomes in basal proteolysis in perfused rat liver. Discrepancy between leupeptin-induced lysosomal enlargement and inhibition of proteolysis. Exp. Cell Res.158 (1985) 257–261.

    Article  CAS  PubMed  Google Scholar 

  80. Herz, J., Kowal, R. C., Goldstein, J. L., and Brown, M. S., Proteolytic processing of the 600 kd low density lipoprotein receptor-related protein (LRP) occurs in atrans-Golgi compartment. EMBO J.9 (1990) 1769–1776.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Holen, I., Gordon, P. B., and Seglen, P. O., role of cyclic nucleotides in the control of hepatic autophagy. Biomed. biochim. Acta50 (1991) 389–392.

    CAS  PubMed  Google Scholar 

  82. Holtzman, E., Lysosomes. Plenum Press, New York and London 1989.

    Book  Google Scholar 

  83. Hortin, G., and Strauss, A. W., Effects of acidotropic compounds on the secretory pathway: inhibition of secretion and processing of the third and fourth components of complement. Biochem. biophys. Res. Commun.136 (1986) 603–609.

    Article  CAS  PubMed  Google Scholar 

  84. Høyvik, H., Gordon, P. B., Berg, T. O., Strømhaug, P. E., and Seglen, P. O., Inhibition of autophagic-lysosomal fusion and autophagic lactolysis by asparagine. J. Cell Biol. (1991) in press.

  85. Høyvik, H., Gordon, P. B., and Seglen, P. O., Use of a hydrolysable probe, [14C]lactose, to distinguish between pre-lysosomal and lysosomal steps in the autophagic pathway. Exp. Cell Res.166 (1986) 1–14.

    Article  PubMed  Google Scholar 

  86. Høyvik, H., Gordon, P. B., and Seglen, P. O., Convergence of autophagic and endocytic pathways at the level of the lysosome. Biochem. Soc. Transact.15 (1987) 964–965.

    Article  Google Scholar 

  87. Isenman, L. D., and Dice, J. F., Secretion of intact proteins and peptide fragments by lysosomal pathways of protein degradation. J. biol. Chem.264 (1989) 21591–21596.

    Article  CAS  PubMed  Google Scholar 

  88. Judah, J. D., and Quinn, P. S., Calcium ion-dependent vesicle fusion in the conversion of proalbumin to albumin. Nature271 (1978) 384–385.

    Article  CAS  PubMed  Google Scholar 

  89. Kayalar, C., and Wong, W. T., Metalloendoprotease inhibitors which block the differentiation of L6 myoblasts inhibit insulin degradation by the endogenous insulin-degrading enzyme. J. biol. Chem.264 (1989) 8928–8934.

    Article  CAS  PubMed  Google Scholar 

  90. Khairallah, E. A., In vivo determination of rates of protein degradation in livers of meal-fed rats: implications of amino acid compartmentation, in: Protein Turnover and Lysosome Function, pp. 89–104. Eds H. L. Segal and D. J. Doyle, Academic, Press, New York 1978.

    Chapter  Google Scholar 

  91. Klausner, R. D., and Sitia, R., Protein degradation in the endoplasmic reticulum. Cell62 (1990) 611–614.

    Article  CAS  PubMed  Google Scholar 

  92. Knowles, S. E., and Ballard, F. J., Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem. J.156 (1976) 609–617.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Knowles, S. E., and Hopgood, M. F., and Ballard, F. J., Degradation of horseradish peroxidase after microinjection into mammalian cells. Exp. Cell Res.174 (1988) 266–278.

    Article  CAS  PubMed  Google Scholar 

  94. Kominami, E., Hashida, S., Khairallah, E. A., and Katunuma, N., Sequestration of cytoplasmic enzymes in an autophagic vacuolelysosomal system induced by injection of leupeptin. J. biol. Chem.258 (1983) 6093–6100.

    Article  CAS  PubMed  Google Scholar 

  95. Kopitz, J., Kisen, G. Ø., Gordon, P. B., Bohley, P., and Seglen, P. O., Non-selective autophagy of cytosolic enzymes in isolated rat hepatocytes. J. Cell Biol.111 (1990) 941–953.

    Article  CAS  PubMed  Google Scholar 

  96. Kopitz, J., Rist, B., and Bohley, P., Post-translational arginylation of ornithine decarboxylase from rat hepatocytes. Biochem. J.267 (1990) 343–348.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Kovács, A. L., Gordon, P. B. Holen, I., and Seglen, P. O., Inhibition of autophagic sequestration in isolated rat hepatocytes by carbohydrates and glucagon. Abstr. 19th FEBS Meeting, Rome (1989), TH 186-TH 186.

  98. Kovács, A. L., Grinde, B., and Seglen, P. O., Inhibition of autophagic vacuole formation and protein degradation by amino acids in isolated hepatocytes. Exp. Cell Res.133 (1981) 431–436.

    Article  PubMed  Google Scholar 

  99. Kovács, A. L., and Seglen, P. O., Inhibition of hepatocytic protein degradation by methylaminopurines and inhibitors of protein synthesis. Biochim. biophys. Acta676 (1981) 213–220.

    Article  PubMed  Google Scholar 

  100. Lardeux, B. R., Heydrick, S. J., and Mortimore, G. E., RNA degradation in perfused rat liver as determined from the release of[14C]cytidine. J. biol. Chem.262 (1987) 14507–14513.

    Article  CAS  PubMed  Google Scholar 

  101. Lardeux, B. R., and Mortimore, G. E., Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy. J. biol. Chem.262 (1987) 14514–14519.

    Article  CAS  PubMed  Google Scholar 

  102. Le, A., Graham, K. S., and Sifers, R. N., Intracellular degradation of the transport-impaired human PiZ α1-antitrypsin variant. Biochemical mapping of the degradative event among compartments of the secretory pathway. J. biol. Chem.265 (1990) 14001–14007.

    Article  CAS  PubMed  Google Scholar 

  103. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C., and Klausner, R. D., Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell54 (1988), 209–220.

    Article  CAS  PubMed  Google Scholar 

  104. Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S., and Klausner, R. D., Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER. Cell56 (1989) 801–813.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Locke, M., and McMahon, J. T., The origin and fate of microbodies in the fat body of an insect, J. Cell Biol.48 (1971) 61–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Loh, Y. P., and Gainer, H., Characterization of pro-opiocortin-converting activity in purified secretory granules from rat pituitary neurointermediate lobe. Proc. natl Acad. Sci. USA79 (1982) 108–112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Lotteau, V., Teyton, L., Peleraux, A., Nilsson, T., Karlsson, L., Schmid, S. L., Quaranta, V., and Peterson, P. A., Intracellular transport of class II MHC molecules directed by invariant chain. Nature348 (1990) 600–605.

    Article  CAS  PubMed  Google Scholar 

  108. Marzella, L., Ahlberg, J., and Glaumann, H., In vitro uptake of particles by lysosomes. Exp. Cell Res.129 (1980) 460–466.

    Article  CAS  PubMed  Google Scholar 

  109. Marzella, L., and Glaumann, H., Increased degradation in rat liver induced by vinblastine. II. Morphologic characterization. Lab. Invest.42 (1980) 18–27.

    CAS  PubMed  Google Scholar 

  110. Marzella, L., and Glaumann, H., Autophagy, microautophagy and crinophagy as mechanisms for protein degradation, in: Lysosomes: Their Role in Protein Breakdown, pp. 319–367. Eds H. Glaumann and F. J. Ballard. Academic Press, London 1987.

    Google Scholar 

  111. Mason, R. W., Gal, S., and Gottesman, M. M., The identification of the majorexcreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem. J.248 (1987) 449–454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Mayorga, L. S., Diaz, R., and Stahl, P. D., Reconstitution of endosomal proteolysis in a cell-free system. Transfer of immune complexes internalized via Fc receptors to an endosomal proteolytic compartment. J. biol. Chem.264 (1989) 5392–5399.

    Article  CAS  PubMed  Google Scholar 

  113. McElligott, M. A., Miao, P., and Dice, J. F., Lysosomal degradation of ribonuclease A and ribonuclease S-protein microinjected into the cytosol of human fibroblasts. J. biol. Chem.260 (1985) 11986–11993.

    Article  CAS  PubMed  Google Scholar 

  114. Melmed, R. N., Benitez, C. J., and Holt, S. J., Intermediate cells of the pancreas. III. Selective autophagy and destruction of β-granules in intermediate cells of the rat pancreas induced by alloxan and streptozotocin. J. Cell Sci.13 (1973) 297–315.

    Article  CAS  PubMed  Google Scholar 

  115. Mizuno, K., Nakamura, T., and Matsuo, H., A unique membranebound, calcium-dependent endopeptidase with specificity toward paired basic residues in rat liver Golgi fractions. Biochem. biophys. Res. Commun.164 (1989) 780–787.

    Article  CAS  PubMed  Google Scholar 

  116. Moore, H.-P., Gumbiner, B., and Kelly, R. B., Chloroquine diverts ACTH from a regulated to a constitutive secretory pathway in AtT-20 cells. Nature302 (1983) 434–436.

    Article  CAS  PubMed  Google Scholar 

  117. Mortimore, G. E., Mechanism and regulation of induced and basal protein degradation in liver, in: Lysosomes: Their Role in Protein Breakdown, pp. 415–443. Eds. H. Glaumann and F. J. Ballard. Academic Press, London 1987.

    Google Scholar 

  118. Mortimore, G. E., Hutson, N. J., and Surmacz, C. A., Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc. natl Acad. Sci. USA80 (1983) 2179–2183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Mortimore, G. E., Lardeux, B. R., and Adams, C. E., Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J. biol. Chem.263 (1988) 2506–2512.

    Article  CAS  PubMed  Google Scholar 

  120. Mortimore, G. E., Lardeux, B. R., and Adams, C. E., Role of microautophagy in basal protein turnover in the rat hepatocyte: mechanism of protein sequestration and its control during starvation, in: Intracellular Proteolysis: Mechanisms and Regulations, pp. 427–435. Eds N. Katunuma and E. Kominami, Japan Sci. Soc. Press, Tokyo 1989.

    Google Scholar 

  121. Mortimore, G. E., and Mondon, C. E., Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J. biol. Chem.245 (1970) 2375–2383.

    Article  CAS  PubMed  Google Scholar 

  122. Mortimore, G. E., and Schworer, C. M., Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature270 (1977) 174–176.

    Article  CAS  PubMed  Google Scholar 

  123. Mortimore, G. E., and Ward, W. F., Internalization of cytoplasmic protein by hepatic lysosomes in basal and deprivation-induced proteolytic states. J. biol. Chem.256 (1981) 7659–7665.

    Article  CAS  PubMed  Google Scholar 

  124. Muesch, A., Hartmann, E., Rohde, K., Rubartelli, A., Sitia, R., and Rapoport, T. A., A novel pathway for secretory proteins. Trends biochem. Sci.15 (1990) 86–88.

    Article  CAS  PubMed  Google Scholar 

  125. O'Hare, M., Kirwin, P., Razooki-Hasan, H., Wilde, C., White, D. A., and Mayer, R. J., Secretion-coupled protein degradation: studies on mammary casein. Biochim. biophys. Acta889 (1986) 49–58.

    Article  CAS  PubMed  Google Scholar 

  126. Oda, K., and Ikehara, Y., Weakly basic amines inhibit the proteolytic conversion of proalbumin to serum albumin in cultured rat hepatocytes. Eur. J. Biochem.152 (1985) 605–609.

    Article  CAS  PubMed  Google Scholar 

  127. Oda, K., Koriyama, Y., Yamada, E., and Ikehara, Y., Effects of weakly basic amines on proteolytic processing and terminal glycosylation of secretory proteins in cultured rat hepatocytes. Biochem. J.240 (1986) 739–745.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Oda, K., Misumi, Y., and Ikehara, Y., Disparate effects of monensin and colchicine on intracellular processing of secretory proteins in cultured rat hepatocytes. Eur. J. Biochem.135 (1983) 209–216.

    Article  CAS  PubMed  Google Scholar 

  129. Orci, L., Ravazzola, M., and Anderson, R. G. W., The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle. Nature326 (1987) 77–79.

    Article  CAS  PubMed  Google Scholar 

  130. Otsuka, H., and Moskowitz, M., Differences in the rats of protein degradation in untransformed and transformed cell lines. Exp. Cell Res.112 (1978) 127–135.

    Article  CAS  PubMed  Google Scholar 

  131. Parker, R. A., Miller, S. J., and Gibson, D. M., Phosphorylation of native 97-kDa 3-hydroxy-3-methylglutaryl-coenzyme A reductase from rat liver. Impact on activity and degradation of the enzyme. J. biol. Chem.264 (1989) 4877–4887.

    Article  CAS  PubMed  Google Scholar 

  132. Pelham, H. R. B., The retention signal for soluble proteins of the endoplasmic reticulum. Trends biochem. Sci.15 (1990) 483–486.

    Article  PubMed  Google Scholar 

  133. Pfeifer, U., Morphologische und funktionelle Aspekte der cellulären Autophagie. Acta morphol. Acad. Sci. hung.20 (1972) 247–267.

    CAS  PubMed  Google Scholar 

  134. Pfeifer, U., Lysosomen und Autophagie. Verh. dtsch. Ges. Path.60 (1976) 28–64.

    Google Scholar 

  135. Pfeifer, U., Application of test substances to the surface of rat liverin situ: opposite effects of insulin and isoproterenol on cellular autophagy. Lab. Invest.50 (1984) 348–354.

    CAS  PubMed  Google Scholar 

  136. Pfeifer, U., Functional morphology of the lysosomal apparatus, in: Lysosomes: Their Role in Protein Breakdown, pp. 3–59. Eds H. Glaumann and F. J. Ballard. Academic Press, London 1987.

    Google Scholar 

  137. Plomp, P. J. A. M., Gordon, P. B., Meijer, A. J., Høyvik, H., and Seglen, P. O., Energy dependence of different steps in the autophagic-lysosomal pathway. J. biol. Chem.264 (1989) 6699–6704.

    Article  CAS  PubMed  Google Scholar 

  138. Plomp, P. J. A. M., Wolvetang, E. J., Groen, A. K., Meijer, A. J., Gordon, P. B., and Seglen, P. O., Energy dependence of autophagic protein degradation in isolated rat hepatocytes. Eur. J. Biochem.164 (1987) 197–203.

    Article  CAS  PubMed  Google Scholar 

  139. Poli, A., Gordon, P. B., Schwarze, P. E., Grinde, B., and Seglen, P. O., Effects of insulin and anchorage on hepatocytic protein metabolism and amino acid transport. J. Cell Sci.48 (1981) 1–18.

    Article  CAS  PubMed  Google Scholar 

  140. Pontremoli, S., Melloni, E., Salamino, F., Patrone, M., Michetti, M., and Horecker, B. L., Activation of neutrophil calpin following its translocation to the plasma membrane induced by phorbol ester or fMet-Leu-Phe. Biochem. biophys. Res. Commun.160 (1989) 737–743.

    Article  CAS  PubMed  Google Scholar 

  141. Poole, B., and Wibo, M., Degradation in cultured cells. The effect of fresh medium, fluoride, and iodoacetate on the digestion of cellular protein protein of rat fibroblasts. J. biol. Chem.248 (1973) 6221–6226.

    Article  CAS  PubMed  Google Scholar 

  142. Prence, E. M., Dong, I., and Sahagian, G. G., Modulation of the transport of a lysosomal enzyme by PDGF. J. Cell Biol.110 (1990) 319–326.

    Article  CAS  PubMed  Google Scholar 

  143. Press, O. W., DeSantes, K., Anderson, S. K., and Geissler, F., Inhibition of catabolism of radiolabeled antibodies by tumor cells using lysosomotropic amines and carboxylic ionophores. Cancer Res.50 (1990) 1243–1250.

    CAS  PubMed  Google Scholar 

  144. Rapoport, T. A., Protein transport across the ER membrane. Trends biochem. Sci.15 (1990) 355–358.

    Article  CAS  PubMed  Google Scholar 

  145. Razooki Hasan, H., White, D. A., and Mayer, R. J., Extensive destruction of newly synthesized casein in mammary explants in organ culture. Biochem. J.202 (1982) 133–138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Refsnes, M., Sandnes, D., and Christoffersen, T., The relationship between beta-adrenoceptor regulation and beta-adrenergic responsiveness in hepatocytes. Studies on acquisition, desensitization and resensitization of isoproterenol-sensitive adenylate cyclase in primary culture. Eur. J. Biochem.163 (1987) 457–466.

    Article  CAS  PubMed  Google Scholar 

  147. Rogers, S. W., and Rechsteiner, M., Degradation of structurally characterized proteins injected into HeLa cells. Effects of intracellular location and the involvement of lysosomes. J. biol. Chem.263 (1988) 19843–19849.

    Article  CAS  PubMed  Google Scholar 

  148. Rogers, S. W., and Rechsteiner, M., Degradation of structurally characterized proteins injected into HeLa cells. Basic measurements. J. biol. Chem.263 (1988) 19833–19842.

    Article  CAS  PubMed  Google Scholar 

  149. Rosenberg-Hasson, Y., Bercovich, Z., Ciechanover, A., and Kahana, C., Degradation of ornithine decarboxylase in mammalian cells is ATP dependent but ubiquitin independent. Eur. J. Biochem.185 (1989) 469–474.

    Article  CAS  PubMed  Google Scholar 

  150. Rotundo, R. L., Thomas, K., Porter-Jordan, K., Benson, R. J. J., Fernandez-Valle, C., and Fine, R. E., Intracellular transport, sorting, and turnover of acetylcholinesterase. Evidence for an endoglycosidase H-sensitive form in Golgi apparatus, sarcoplasmic reticulum, and clathrin-coated vesicles and its rapid degradation by a non-lysosomal mechanism. J. biol. Chem.264 (1989) 2146–3152.

    Google Scholar 

  151. Rønning, Ø. W., Lindmo, T., Pettersen, E. O., and Seglen, P. O., The role of protein accumulation in the cell cycle control of human NHIK 3025 cells. J. cell. Physiol.109 (1981) 411–418.

    Article  PubMed  Google Scholar 

  152. Rønning, Ø. W., Lindmo, T., Pettersen, E. O., and Seglen P. O., Effect of serum step-down on protein metabolism and proliferation kinetics of NHIK 3025 cells. J. cell. Physiol.107 (1981) 47–57.

    Article  PubMed  Google Scholar 

  153. Rønning, Ø. W., Pettersen, E. O., and Seglen, P. O., Protein synthesis and protein degradation through the cell cycle of human NHIK 3025 cells in vitro. Exp. Cell Res.123 (1979) 63–72.

    Article  PubMed  Google Scholar 

  154. Sakiyama, H., Nishino, Y., Tanaka, T., Tomosawa, T., Kinoshita, H., Nagata, K., Chiba, K., and Sakiyama, S., Purification and characterization of a novel calcium-dependent serine proteinase secreted from malignant hamster embryo fibroblast Nil2C2. Biochim. biophys. Acta990 (1989) 156–161.

    Article  CAS  PubMed  Google Scholar 

  155. Schwarze, P. E., and Seglen, P. O., Paradoxical stimulation by amino acids of the degradation of[35 S]ethionine-labelled, shortlived protein in isolated rat hepatocytes. Biochem. biophys. Res. Commun.117 (1983) 509–516.

    Article  CAS  PubMed  Google Scholar 

  156. Schwarze, P. E., and Seglen, P. O., Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Exp. Cell Res.157 (1985) 15–28.

    Article  CAS  PubMed  Google Scholar 

  157. Schworer, C. M., and Mortimore, G. E., Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc. natl Acad. Sci. USA76 (1979) 3169–3173.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Schworer, C. M., Shiffer, K. A., and Mortimore, G. E., Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J. biol. Chem.256 (1981) 7652–7658.

    Article  CAS  PubMed  Google Scholar 

  159. Seglen, P. O., Protein degradation in isolated rat hepatocytes is inhibited by ammonia. Biochem. biophys. Res. Commun.66 (1975) 44–52.

    Article  CAS  PubMed  Google Scholar 

  160. Seglen, P. O., Inhibitors of lysosomal function. Meth. Enzymol.96 (1983) 737–764.

    Article  CAS  Google Scholar 

  161. Seglen, P. O., Regulation of autophagic protein degradation in isolated liver cells, in: Lysosomes: Their Role in Protein Breakdown, pp. 369–414. Eds H. Glaumann and F. J. Ballard. Academic Press, London 1987.

    Google Scholar 

  162. Seglen, P. O., and Gordon, P. B., 3-Methyladenine: a specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatoc/tes. Proc. natl. Acad. Sci. USA79 (1982) 1889–1892.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Seglen, P. O., and Gordon, P. B., Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. J. Cell Biol.99 (1984) 435–444.

    Article  CAS  PubMed  Google Scholar 

  164. Seglen, P. O., Gordon, P. B., Grinde, B., Solheim, A. E., Kovács, A. L., and Poli, A., Inhibitors and pathways of hepatocytic protein degradation. Acta biol. med. germ.40 (1981) 1587–1598.

    CAS  PubMed  Google Scholar 

  165. Seglen, P. O., Gordon, P. B., and Holen, I., Non-selective autophagy. Semin. Cell Biol. (1991), in press.

  166. Seglen, P. O., Gordon, P. B., Holen, I., and Høyvik, H., Hepatocytic autophagy. Biomed. biochim. Acta50 (1991) 373–381.

    CAS  PubMed  Google Scholar 

  167. Seglen, P. O., Gordon, P. B., and Høyvik, H., Radiolabelled sugars as probes of hepatocytic autophagy. Biomed. biochim. Acta45 (1986) 1647–1656.

    CAS  PubMed  Google Scholar 

  168. Seglen, P. O., Gordon, P. B., and Høyvik, H., Autophagic-lysosomal function in hepatocytes electroloaded with hydrolysable sugars, in: Intracellular Proteolysis: Mechanisms and Regulations, pp. 419–426. Eds N. Katunuma and E. Kominami, Japan Sci. Soc. Press, Tokyo 1989.

    Google Scholar 

  169. Seglen, P. O., Gordon, P. B., and Poli, A., Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochim. biophys. Acta630 (1980) 103–118.

    Article  CAS  PubMed  Google Scholar 

  170. Seglen, P. O., Gordon, P. B., Tolleshaug, H., and Høyvik, H., Pathways of intracellular sequestration and protein degradation in isolated rat hepatocytes, in: Intracellular Protein Catabolism, pp. 437–446. Eds E. A. Khairallah, J. S. Bond and J. W. C. Bird. Alan R. Liss, Inc., New York 1985.

    Google Scholar 

  171. Seglen, P. O., Gordon, P. B., Tolleshaug, H., and Høyvik, H., Use of[3 H]raffinose as a specific probe of autophagic sequestration. Exp. Cell Res.162 (1986) 273–277.

    Article  CAS  PubMed  Google Scholar 

  172. Seglen, P. O., Grinde, B., and Solheim, A. E., Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur. J. Biochem.95 (1979) 215–225.

    Article  CAS  PubMed  Google Scholar 

  173. Seglen, P. O., Kovács, A. L., and Gordon, P. B., Autophagic protein degradation in hepatocytes, in: Regulation of Hepatic Function. Eds N. Grunnet and B. Quistorff. Munksgaard, Copenhagen 1991, in press.

    Google Scholar 

  174. Seglen, P. O., Munthe-Kaas, A. C., and Dybedal, M.-A. S., Amino acid control of protein degradation in normal and leukemic human lymphocytes. Exp. Cell Res.155 (1984) 121–128.

    Article  CAS  PubMed  Google Scholar 

  175. Seglen, P. O., and Reith, A., Ammonia inhibition of protein degradation in isolated rat hepatocytes. Quantitative ultrastructural alterations in the lysosomal system. Exp. Cell Res.100 (1976) 276–280.

    Article  CAS  PubMed  Google Scholar 

  176. Seglen, P. O., and Reith, A., Ammonia inhibits protein secretion in isolated rat hepatocytes. Biochim. biophys. Acta496 (1977) 29–35.

    Article  CAS  PubMed  Google Scholar 

  177. Seglen, P. O., and Solheim, A. E., Conversion of dense lysosomes into light lysosomes during hepatocytic autophagy. Exp. Cell Res.157 (1985) 550–555.

    Article  CAS  PubMed  Google Scholar 

  178. Shen, W.-C., Wan, J., and Shen, D., Proteolytic processing in a non-lysosomal compartment is required for transcytosis of proteinpolylysine conjugates in cultured Madin-Darby canine kidney cells. Biochem. biophys. Res. Commun.166 (1990) 316–323.

    Article  CAS  PubMed  Google Scholar 

  179. Shite, S., Seguchi, T., Shimada, T., Ono, M., and Kuwano, M., Rapid turnover of low-density lipoprotein receptor by a non-lysosomal pathway in mouse macrophage J774 cells in inhibitory effect of brefeldin. A. Eur. J. Biochem.191 (1990) 491–497.

    Article  CAS  PubMed  Google Scholar 

  180. Sidman, C., B lymphocyte differentiation and the control of IgM μ chain expression. Cell23 (1981) 379–389.

    Article  CAS  PubMed  Google Scholar 

  181. Slavicek, J. M., Jones, N. C., and Richter, J. D., Rapid turnover of adenovirus E1A is determined through a co-translational mechanism that requires an amino-terminal domain. EMBO J.7 (1988) 3171–3180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Slot, L. A., Lauridsen, A.-M. B., and Hendil, K. B., Intracellular protein degradation in serum-deprived human fibroblasts. Biochem. J.237 (1986) 491–498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Smith, R. E., Farquhar, M. G., Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J. Cell Biol.31 (1966) 319–336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Strauss, A. W., Zimmerman, M., Boime, I., Ashe, B., Mumford, R. A., and Alberts, A. W., Characterization of an endopeptidase involved in pre-protein processing. Proc. natl. Acad. Sci. USA76 (1979) 4225–4229.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Strous, G. J., Van Kerkhof, P., Dekker, J., and Schwartz, A. L., Metalloendoprotease inhibitors block protein synthesis, intracellular transport, and endocytosis in hepatoma cells. J. biol. Chem.263 (1988) 18197–18204.

    Article  CAS  PubMed  Google Scholar 

  186. Tanaka, R. D., Li, A. C., Fogelman, A. M., and Edwards, P. A., Inhibition of lysosomal protein degradation inhibits the basal degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Lipid Res.27 (1986) 261–273.

    Article  CAS  PubMed  Google Scholar 

  187. Tanaka, Y., Yano, S., Furuno, K., Ishikawa, T., Himeno, M., and Kato, K., Transport of acid phosphatase to lysosomes does not involve passage through the cell surface. Biochem. biophys. Res. Commun.170 (1990) 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  188. Tanaka, Y., Yano, S., Okada, K., Ishikawa, T., Himeno, M., and Kato, K., Lysosomal acid phosphatase is transported via endosomes to lysosomes. Biochem. biophys. Res. Commun.166 (1990) 1176–1182.

    Article  CAS  PubMed  Google Scholar 

  189. Tanner, L. I., and Lienhard, G. E., Localization of transferrin receptors and insulin-like growth factor II receptors in vesicles from 3T3-L1 adipocytes that contain intracellular glucose transporters. J. Cell Biol.108 (1989) 1537–1545.

    Article  CAS  PubMed  Google Scholar 

  190. Tooze, J., Hollinshead, M., Ludwig, T., Howell, K., Hoflack, B., and Kern, H., In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J. Cell Biol.111 (1990) 329–345.

    Article  CAS  PubMed  Google Scholar 

  191. Tooze, S. A., and Huttner, W. B., Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell60 (1990) 837–847.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Von Zastrow, M., Castle, A. M., and Castle, J. D., Ammonium chloride alters secretory protein sorting within the maturing exocrine storage compartment. J. biol. Chem.264 (1989) 6566–6571.

    Article  Google Scholar 

  193. Warren, L., Stimulation of lysosomal enzyme secretion by growth factors. Exp. Cell Res.190 (1990) 133–136.

    Article  CAS  PubMed  Google Scholar 

  194. Wilde, C. J., Addey, C. V. P., and Knight, C. H., Regulation of intracellular casein degradation by secreted milk proteins. Biochim. biophys. Acta992 (1989) 315–319.

    Article  CAS  PubMed  Google Scholar 

  195. Winkler, J. R., and Segal, H. L., Swainsonine inhibits glycoprotein degradation by isolated rat liver lysosomes. J. biol. Chem.259 (1984) 15369–15372.

    Article  CAS  PubMed  Google Scholar 

  196. Woods, J. W., Goodhouse, J., and Farquhar, M. G., Transferrin receptors and cation-independent mannose-6-phosphate receptors deliver their ligands to two distinct subpopulations of multivesicular endosomes. Eur. J. Cell Biol.50 (1989) 132–143.

    CAS  PubMed  Google Scholar 

  197. YaDeau, J. T., and Blobel, G., Solubilization and characterization of yeast signal peptidase. J. biol. Chem.264 (1989) 2928–2934.

    Article  CAS  PubMed  Google Scholar 

  198. Zammit, V. A., and Easom, R. A., Regulation of hepatic HMG-CoA reductase in vivo by reversible phosphorylation. Biochim. biophys. Acta927 (1987) 223–228.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seglen, P.O., Bohley, P. Autophagy and other vacuolar protein degradation mechanisms. Experientia 48, 158–172 (1992). https://doi.org/10.1007/BF01923509

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923509

Key Words

Navigation