Skip to main content
Log in

Allosteric proteins after thirty years: The binding and state functions of the neuronalα7 nicotinic acetylcholine receptors

  • Milti-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

A key statement of the 1965 Monod-Wyman-Changeux (MWC) model for allosteric proteins concerns the distinction between the ligand-binding function (\(\bar Y\)) and the relevant state function (\(\bar R\)). Sequential models predict overlapping behavior of the two functions. In contrast, a straightforward experimental consequence of the MWC model is that for an oligomeric protein the parameters which characterize the two functions should differ significantly. Two situations, where\(\bar R > \bar Y\) and the system ishyper-responsive or where\(\bar R< \bar Y\) and the system ishypo-responsive, have been encountered. Indeed, the hyper-responsive pattern was first observed for the enzyme aspartate transcarbamoylase, by comparing\(\bar Y\) with\(\bar R\) monitored by a change in sedimentation. Extensions of the theory to ligand-gated channels led to the suggestion that, on the one hand, hyper-responsive properties also occur with high-affinity mutants. On the other hand, native channels of the acetylcholine neuronalα7 receptor and low-affinity mutants of the glycine receptor can be interpreted in terms of the hypo-responsive pattern. For the ligand-gated channels, whereas\(\bar R\) is detected directly by ion flux, ligand binding has rarely been measured and the formation of desensitized states may complicate the analysis. However, stochastic models incorporating both binding and channel opening for single molecules predict differences that should be measurable with new experimental approaches, particularly fluorescence correlation spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Changeux J.-P. (1961) The feedback control mechanism of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harbor Symp. Quant. Biol.26: 313–318

    PubMed  Google Scholar 

  2. Monod J. and Jacob F. (1961) General conclusions: telenomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harbor Symp. Quant. Biol.26: 389–401

    Google Scholar 

  3. Monod J., Changeux J.-P. and Jacob F. (1963) Allosteric proteins and cellular control systems. J. Molec. Biol.6: 306–329

    PubMed  Google Scholar 

  4. Changeux J.-P. (1996) Neurotransmitter receptors in the changing brain: allosteric transitions, gene expression and pathology at the molecular level. In: The Nobel Symposium 1994: Individual Development over the Lifespan: Biological and Psychosocial Perspectives, pp. 107–138, Magnusson D. (ed.), Cambridge University Press, Cambridge

    Google Scholar 

  5. Monod J., Wyman J. and Changeux J.-P. (1965) On the nature of allosteric transitions: a plausible model. J. Molec. Biol.12: 88–118

    PubMed  Google Scholar 

  6. Perutz M. F. (1989) Mechanisms of cooperativity and allosteric regulation in proteins. Quart. Rev. Biophys.22: 139–236

    Google Scholar 

  7. Rubin M. M. and Changeux J.-P. (1966) On the nature of allosteric transitions: implications of non-exclusive ligand binding. J. Molec. Biol.21: 265–274

    Article  PubMed  Google Scholar 

  8. Changeux J.-P. and Rubin M. M. (1968) Allosteric interactions in aspartate transcarbamylase. III. Interpretations of experimental data in terms of the model of Monod, Wyman, and Changeux. Biochemistry7: 553–561

    PubMed  Google Scholar 

  9. Pauling L. (1935) The oxygen equilibrium of hemoglobin and its structural interpretation. Proc. Natl. Acad. Sci. USA21: 186–191

    Google Scholar 

  10. Koshland D. E., Némethy G. and Filmer D. (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry5: 365–385

    PubMed  Google Scholar 

  11. Schachman H. K. (1988) Can a simple model account for the allosteric transition of aspartate transcarbamoylase? J. Biol. Chem.263: 18583–18586

    PubMed  Google Scholar 

  12. Kantrowitz E. R. and Lipscomb W. N. (1988)Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science241: 669–674

    PubMed  Google Scholar 

  13. Fetler L., Tauc P., Herve G., Moody M. F. and Vachette P. (1995) X-ray scattering titration of the quaternary structure transition of aspartate transcarbamylase with a bisubstrate analog: influence of nucleotide effectors. J. Molec. Biol.251: 243–255

    Article  PubMed  Google Scholar 

  14. Weber K. (1968) New structural model ofE. coli aspartate transcarbamylase and the amino-acid sequence of the regulatory polypeptide chain. Nature218: 1116–1119

    PubMed  Google Scholar 

  15. Wiley D. C. and Lipscomb W. N. (1968) Crystallographic determination of symmetry of aspartate transcarbamylase. Nature218: 1119–1121

    PubMed  Google Scholar 

  16. Edelstein S. J., Schaad O., Henry E., Bertrand D. and Changeux J.-P. (1996) A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biol. Cybern. (in press)

  17. Edelstein S. J. (1971) Extensions of the allosteric model for hemoglobin. Nature230: 224–227

    PubMed  Google Scholar 

  18. Edelstein S. J. (1975) Cooperative interactions of hemoglobin. A. Rev. Biochem.44: 209–232

    Article  Google Scholar 

  19. Shulman R. G., Hopfield J. J. and Ogawa S. (1975) Allosteric interpretation of hemoglobin properties. Quart. Rev. Biophys.8: 325–420

    Google Scholar 

  20. Sawicki C. A. and Gibson Q. H. (1976) Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. J. Biol. Chem.251: 1533–1542

    PubMed  Google Scholar 

  21. Rivetti C., Mozzarelli A., Rossi G. L., Henry E. R. and Eaton W. A. (1993) Oxygen binding by single crystals of hemoglobin. Biochemistry32: 2888–2906

    Article  PubMed  Google Scholar 

  22. Edelstein S. J. (1996) An allosteric theory for hemoglobin incorporating asymmetric states to test the putative molecular model for cooperativity. J. Molec. Biol.257: 737–744

    Article  PubMed  Google Scholar 

  23. Changeux J.-P., Thiéry J.-P., Tung T. and Kittel C. (1967) On the cooperativity of biological membranes. Proc. Natl. Acad. Sci. USA57: 335–341

    Google Scholar 

  24. Karlin A. (1967) On the application of ‘a plausible model’ of allosteric proteins to the receptor of acetylcholine. J. Theor. Biol.16: 306–320

    Article  PubMed  Google Scholar 

  25. Edelstein S. J. (1972) An allosteric mechanism for the acetylcholine receptor. Biochem. Biophys. Res. Commun.48: 1160–1165

    Article  PubMed  Google Scholar 

  26. Changeux J.-P., Devillers-Thiéry A. and Chemouilli P. (1984) Acetylcholine receptor: an allosteric protein. Science225: 1335–1345

    PubMed  Google Scholar 

  27. Galzi J.-L., Edelstein S. J. and Changeux J.-P. (1996) The multiple phenotypes of allosteric receptor mutants. Proc. Natl. Acad. Sci. USA93: 1853–1858

    Article  PubMed  Google Scholar 

  28. Galzi J.-L. and Changeux J.-P. (1994) Neurotransmitter-gated ion channels as unconventional allosteric proteins.Curr. Opinion in Structural Biol. 4: 554–565

    Article  Google Scholar 

  29. Katz B. and Thesleff S. (1957) A study of ‘desensitization’ produced by acetylcholine at the motor end-plate. J. Physiol.138: 83–80

    Google Scholar 

  30. Heidmann T. and Changeux J.-P. (1979) Fast kinetic studies on the interaction of a fluorescent agonist with the membranebound acetylcholine receptor fromTorpedo marmorata. Eur. J. Biochem.94: 255–279

    PubMed  Google Scholar 

  31. Boyd N. D. and Cohen J. B. (1980) Kinetics of binding of [3H]acetylcholine and [3H]carbamoylcholine toTorpedo postsynaptic membranes: slow conformational transitions of the cholinergic receptor.Biochemistry 19: 5344–5353

    Article  PubMed  Google Scholar 

  32. Trussell L. O. and Fischbach G. D. (1989) Glutamate receptor desensitization and its role in synaptic transmission. Neuron3: 209–218

    Article  PubMed  Google Scholar 

  33. Colquhoun D., Jonas P. and Sakmann B. (1992) Action of brief pulses of glutamate on AMPA/Kainate receptors in patches from different neurones of rat hippocampal slices. J. Physiol.458: 261–287

    PubMed  Google Scholar 

  34. Devillers-Thiéry A., Galzi J.-L., Eiselé J.-L., Bertrand S., Bertrand D. and Changeux J.-P. (1993) Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J. Membrane Biol.136: 97–112

    Google Scholar 

  35. Karlin A. and Akabas M. H. (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors. Neuron15: 1231–1244

    Article  PubMed  Google Scholar 

  36. Bertrand D. and Changeux J.-P. (1995) Nicotinic receptor: an allosteric protein specialized for intracellular communication. Seminars in the Neurosciences7: 75–90

    Article  Google Scholar 

  37. McGehee D. S. and Role L. W. (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. A. Rev. Physiol.57: 521–546

    Article  Google Scholar 

  38. Palma E., Bertrand S., Binzoni T. and Bertrand D. (1996) Neural nicotinicα7 receptor expressed inXenopus oocytes presents five putative binding sites for methyllycaconitine. J. Physiol.491.1: 151–161

    Google Scholar 

  39. Heidmann T., Bernhardt J., Neumann E. and Changeux J.-P. (1983) Rapid kinetics of agonist binding and permeability response analyzed in parallel on acetylcholine receptor rich membranes fromTorpedo marmorata. Biochemistry22: 5452–5459

    Article  PubMed  Google Scholar 

  40. Sakmann B., Patlak J. and Neher E. (1980) Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature286: 71–73

    PubMed  Google Scholar 

  41. Colquhoun D. and Sakmann B. (1985) Fast events in singlechannel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol.369: 501–557

    PubMed  Google Scholar 

  42. Jackson M. B. (1988) Dependence of acetylcholine receptor channel kinetics on agonist concentration in cultured mouse muscle fibers. J. Physiol.397: 555–583

    PubMed  Google Scholar 

  43. Sine S. M., Claudio T. and Sigworth F. J. (1990) Activation ofTorpedo acetylcholine receptors expressed in mouse fibroblasts; single channel current kinetics reveal distinct agonist binding affinities. J. Gen. Physiol.96: 395–437

    Article  PubMed  Google Scholar 

  44. Eigen M. and Rigler R. (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA91: 5740–5747

    PubMed  Google Scholar 

  45. Rauer B., Neumann E., Widengren J. and Rigler R. (1996) Fluorscence correlation spectrometry of the interaction kinetics of tetramethylrhodaminα-bungarotoxin withTorpedo californica acetylcholine receptor. Biophys. Chem.58: 3–12

    Article  Google Scholar 

  46. Heidmann T. and Changeux J.-P. (1980) Interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor fromTorpedo marmorata in the millisecond time range: resolution of an ‘intermediate’ conformational transition and evidence for positive cooperative effects. Biochem. Biophys. Res. Commun.97: 889–896

    PubMed  Google Scholar 

  47. Revah F., Bertrand D., Galzi J.-L., Devillers-Thiéry A., Mulle C., Hussy N., Bertrand S., Ballivet M. and Changeux J.-P. (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature353: 846–849

    Article  PubMed  Google Scholar 

  48. Labarca C., Nowak M. W., Zhang H., Tang L., Desphande P. and Lester H. A. (1995) Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature376: 514–516

    Article  PubMed  Google Scholar 

  49. Filatov G. N. and White M. M. (1995) The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Molec. Pharmacol.48: 379–384

    Google Scholar 

  50. Bertrand D., Devillers-Thiéry A., Revah F., Galzi J.-L., Hussy N., Mulle C., Bertrand S., Ballivet M. and Changeux J.-P. (1992) Unconventional pharmacology of a neural nicotinic receptor mutated in the channel domain. Proc. Natl. Acad. Sci. USA89: 1261–1265

    PubMed  Google Scholar 

  51. Bertrand S., Palma E., Corringer P. J., Edelstein S. J., Changeux J.-P. and Bertrand D. (1996) Methyllcaconitine a competitive inhibitor of theα7 desensitized open mutant L247T. Soc. Neurosci. Abstr.22: 1522

    Google Scholar 

  52. Devillers-Thiéry A., Galzi J.-L., Bertrand S., Changeux J.-P. and Bertrand D. (1992) Stratified organization of the nicotinic acetylcholine receptor channel. Neuroreport3: 1001–1004

    PubMed  Google Scholar 

  53. Galzi J.-L., Devillers-Thiéry A., Hussy N., Bertrand S., Changeux J.-P. and Bertrand D. (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature359: 500–505

    Article  PubMed  Google Scholar 

  54. Ohno K., Hutchison D. O., Milone M., Brengham J. M., Bouzat C., Sine S. M. and Engel A. G. (1995) Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the epsilon subunit. Proc. Natl. Acad. Sci. USA92: 758–762

    PubMed  Google Scholar 

  55. Langosh D., Laube B., Rundström N., Schmieden V., Bormann J. and Betz H. (1994) Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. EMBO J.13: 4223–4228

    PubMed  Google Scholar 

  56. Rajendra S., Lynch J., Pierce K. D., French C. R., Barry P. H. and Schofield P. R. (1995) Mutation of an arginine residue transforms beta-alanine and taurine from agonists into competitive antagonists. Neuron14: 169–175

    Article  PubMed  Google Scholar 

  57. Castro N. G. and Albuquerque X. (1993) Brief-lifetime, fastinactivating ion channels account for theα-bungarotoxin-sensitive nicotinic response in hippocampal neurons. Neurosci. Lett.164: 137–140

    Article  PubMed  Google Scholar 

  58. Lefkowitz R., Cotecchia S., Samama P. and Costa T. (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci.14: 303–307

    Article  PubMed  Google Scholar 

  59. Picones A. and Korenbrot J. I. (1995) Spontaneous, ligand-independent activity of the cGMP-gated ion channel in cone photoreceptors of fish. J. Physiol.485: 699–714

    PubMed  Google Scholar 

  60. Tibbs G. R., Goulding E. H. and Siegelbaum S. A. (1995) Spontaneous opening of cyclic nucleotide-gated channels supports an allosteric model of activation. Biophys. J.68: A253

    Google Scholar 

  61. Yakel J. L., Lagrutta A., Adelman J. P. and North R. A. (1993) Single amino acid substitution affects desensitization of the 5-hydroxytryptamine type 3 receptor expressed inXenopus oocytes. Proc. Natl. Acad. Sci. USA90: 5030–5033

    PubMed  Google Scholar 

  62. Hachiya N., Mihara K., Suda K., Horst M., Schatz G. and Lithgow T. (1995) Reconstitution of the initial steps of mitochondrial protein import. Nature376: 705–709

    Article  PubMed  Google Scholar 

  63. Horst M., Hilfiker-Rothenfluh S., Oppliger W. and Schatz G. (1995) Dynamic interaction of the protein translocation systems in the inner and outer membranes of yeast mitochondria. EMBO J.14: 2293–2297

    PubMed  Google Scholar 

  64. Schatz G. and Dobberstein B. (1996) Common principles of protein translocation across membranes. Science271: 1519–1526

    PubMed  Google Scholar 

  65. Bardsley W. G. and Waight R. D. (1978) Factorability of the Hessian of the binding polynomial. The central issue concerning statistical ratios between binding constants, Hill plot slope and positive and negative cooperativity. J. Theor. Biol.72: 321–372

    Article  PubMed  Google Scholar 

  66. Bardsley W. G., Woolfson R. and Mazat J.-P. (1980) Relationships between the magnitude of the Hill plot slopes, apparent binding constants and factorability of binding polynomials and their Hessians. J. Theor. Biol.85: 247–284

    Article  PubMed  Google Scholar 

  67. Wyman J. and Gill S. J. (1990) Binding and Linkage: Functional Chemistry of Biological Macromolecules, Mill Valley, University Science Books

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Edelstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelstein, S.J., Changeux, J.P. Allosteric proteins after thirty years: The binding and state functions of the neuronalα7 nicotinic acetylcholine receptors. Experientia 52, 1083–1090 (1996). https://doi.org/10.1007/BF01952106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952106

Key words

Navigation