Skip to main content
Log in

Incorporation of the gene for a cell-cell channel protein into transformed cells leads to normalization of growth

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Incorporation of the gene for connexin 43, a cell-cell channel protein of gap junction, into the genome of communication-deficient transformed mouse 10T1/2 cells restored junctional communication and inhibited growth. Growth was slowed, saturation density reduced and focus formation suppressed, and these effects were contingent on overexpression of the exogenous gene and the consequent enhancement of communication. In coculture with normal cells the growth of the connexin overexpressors was completely arrested, as these cells established strong communication with the normal ones. Thus, in culture by themselves or in coculture, the connexin overexpressor cells grew like normal cells. These results demonstrate that the cell-cell channel is instrumental in growth control; they are the expected behavior if the channel transmits cytoplasmic growth-regulatory signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, M.M., Menko, A.S., Johnson, R.G., Sheppard, J.R., Sheridan, J.D. 1981. Rapid and reversible reduction of junctional permeability in cells infected with a temperature-sensitive mutant of avian sarcoma virus.J. Cell Biol. 91:573–578

    PubMed  Google Scholar 

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. 1987. Current Protocols in Molecular Biology. John Wiley & Sons, New York

    Google Scholar 

  • Azarnia, R., Loewenstein, W.R. 1984. Intercellular communication and the control of growth: X. Alteration of junctional permeability by thesrc gene. A study with temperaturesensitive mutant Rous sarcoma virus.J. Membrane Biol. 82:191–205

    Google Scholar 

  • Azarnia, R., Loewenstein, W.R. 1987. Polyomavirus middle T antigen downregulates junctional cell-to-cell communication.Mol. Cell. Biol. 7:946–950

    PubMed  Google Scholar 

  • Azarnia, R., Mitcho, M., Shalloway, D., Loewenstein, W.R. 1989. Junctional intercellular communication is cooperatively inhibited by oncogenes in transformation.Oncogene 4:1161–1168

    PubMed  Google Scholar 

  • Azarnia, R., Reddy, S., Kmiecik, T.E., Shalloway, D., Loewenstein, W.R. 1988. The cellularsrc gene product regulates junctional cell-to-cell communication.Science 239:398–401

    PubMed  Google Scholar 

  • Beyer, E.C., Kistler, J., Paul, D.L., Goodenough, D.A. 1989. Antisera directed against connexin 43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues.J. Cell. Biol. 108:595–605

    PubMed  Google Scholar 

  • Beyer, E.C., Paul, D.L., Goodenough, D.A. 1987. Connexin 43: A protein from rat heart homologous to a gap junction protein from liver.J. Cell Biol. 105:2621–2629

    PubMed  Google Scholar 

  • Borek, C., Higashino, S., Loewenstein, W.R. 1969. Intercellular communication and tissue growth: IV. Conductance of membrane junctions of normal and cancerous cells in culture.J. Membrane Biol. 1:274–293

    Google Scholar 

  • Boulter, C.A., Wagner, E.F. 1987. A universal retroviral vector for efficient constitutive expression of exogenous genes.Nucleic Acids Res. 15:7194

    PubMed  Google Scholar 

  • Chang, C.C., Trosko, J.E., Kung, H.J., Bombick, D., Matsumura, F. 1985. Potential role of thesrc gene product in inhibition of gap-junctional communication in NIH/3T3 cells.Proc. Natl. Acad. Sci. USA 82:5360–5364

    PubMed  Google Scholar 

  • Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., Rutter, W.J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 18:5294–5299

    PubMed  Google Scholar 

  • Chomezynski, P., Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162:156–159

    PubMed  Google Scholar 

  • Crow, D.S., Beyer, E.C., Paul, D.L., Kobe, S.S., Lau, A.F. 1990. Phosphorylation of connexin43 gap junction protein in uninfected and rous sarcoma virus-transformed mammalian fibroblasts.Mol. Cell. Biol. 10:1754–1763

    PubMed  Google Scholar 

  • Eghbali, B., Kessler, J.A., Spray, D.C. 1990. Expression of gap junction channels in communication-incompetent cells after stable transfection with cDNA encoding connexin 32.Proc. Natl. Acad. Sci. USA 87:1328–1331

    PubMed  Google Scholar 

  • Enomoto, T., Sasaki, Y., Shiba, Y., Kanno, Y., Yamasaki, H. 1981. Tumor promotors cause a rapid and reversible inhibition of the formation and maintenance of electrical cell coupling in culture.Proc. Natl. Acad. Sci. USA 78:5628–5632

    PubMed  Google Scholar 

  • Filson, A.J., Azarnia, R., Beyer, E.C., Loewenstein, W.R., Brugge, J.S. 1990. Tyrosine phosphorylation correlates with inhibition of cell-to-cell communication.Cell Growth Diff. 1:661–668

    PubMed  Google Scholar 

  • Flagg-Newton, J.L., Simpson, I., Loewenstein, W.R. 1979. Permeability of the cell-to-cell membrane channels in mammalian cell junction.Science 205:404–407

    PubMed  Google Scholar 

  • Gimlich, R.L., Kumar, N.M., Gilula, N.B. 1990. Differential regulation of the levels of three gap junction mRNAs inXenopus embryos.J. Cell Biol. 110:597–605

    PubMed  Google Scholar 

  • Green, S., Issemann, I., Sheer, E. 1988. A versatilein vivo andin vitro eukaryotic expression vector for protein engineering.Nucleic Acids Res. 16:369

    PubMed  Google Scholar 

  • Guthrie, S.C., Gilula, N.B. 1989. Gap junctional communication and development.Trends Neurosci. 12:12–16

    PubMed  Google Scholar 

  • Hantzopoulos, P.A., Sullinger, B.A., Ungers, G., Gilboa, E. 1989. Improved gene expression upon transfer of adenosine deaminase minigene outside the transcriptional unit of a retroviral vector.Proc. Natl. Acad. Sci. USA 86:3519–3523

    PubMed  Google Scholar 

  • Hoh, J.H., John, S.A., Revel, J.-P. 1991. Molecular cloning and characterization of a new member of the gap junction gene family, connexin-31.J. Biol. Chem. 266:6524–6531

    PubMed  Google Scholar 

  • Honig, M.G., Hume, R.I. 1986. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures.J. Cell Biol. 103:171–187

    PubMed  Google Scholar 

  • Korman, A.J., Frantz, D., Strominger, J.L., Mulligan, R.C. 1987. Expression of human class II major histocompatibility complex antigens using retrovirus vectors.Proc. Natl. Acad. Sci. USA 84:2150–2154

    PubMed  Google Scholar 

  • Kumar, N.M., Gilula, N.B. 1986. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein.J. Cell Biol. 103:767–776

    PubMed  Google Scholar 

  • Lee, S.W., Tomasetto, C., Sager, R. 1991. Positive selection of candidate tumor-suppressor genes by subtractive hybridization.Proc. Natl. Acad. Sci. USA 88:2825–2829

    PubMed  Google Scholar 

  • Lehrach, H.D., Diamond, D., Wozney, J.M., Boedtker, H. 1977. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination.Biochemistry 16:4743–4751

    PubMed  Google Scholar 

  • Loewenstein, W.R. 1966. Permeability of membrane junctions.Ann. N.Y. Acad. Sci. 137:441–472

    PubMed  Google Scholar 

  • Loewenstein, W.R. 1967. On the genesis of cellular communication.Dev. Biol. 15:503–520

    PubMed  Google Scholar 

  • Loewenstein, W.R. 1979. Junctional intercellular communication and the control of growth.Biochim. Biophys. Acta Cancer Rev. 560:1–65

    Google Scholar 

  • Loewenstein, W.R. 1981. Junctional intercellular communication. The cell-to-cell membrane channel.Physiol. Rev. 61:829–913

    PubMed  Google Scholar 

  • MacGregor, G.R., Caskey, C.T. 1989. Constructions of plasmids that expressE. coli β-galactosidase in mammalian cells.Nucleic Acids Res. 17:2365

    PubMed  Google Scholar 

  • Maldonado, P.E., Rose, B., Loewenstein, W.R. 1988. Growth factors modulate junctional cell-to-cell communication.J. Membrane Biol. 106:203–210

    Google Scholar 

  • Maniatis, T., Fritsch, E.F., Sambrook, J. 1989. Molecular Cloning: A Laboratory Manual. Vol. 1–3. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mehta, P.P., Bertram, J.S., Loewenstein, W.R. 1986. Growth inhibition of transformed cells correlates with their junctional communication with normal cells.Cell 44:187–196

    PubMed  Google Scholar 

  • Mehta, P.P., Bertram, J.S., Loewenstein, W.R. 1989. The actions of retinoids on cellular growth correlate with their actions on gap junctional communication.J. Cell Biol. 108:1053–1065

    PubMed  Google Scholar 

  • Mehta, P.P., Loewenstein, W.R. 1991. Differential regulation of communication by retinoic acid in homologous and heterologous junctions between normal and transformed cells.J. Cell Biol. 113:371–379

    PubMed  Google Scholar 

  • Miller, A.D., Buttimore, C. 1986. Redesign of retrovirus packaging cell lines to avoid recombination leading to Helper virus production.Mol. Cell. Biol. 6:2895–2902

    PubMed  Google Scholar 

  • Murray, A.W., Fitzgerald, D.J. 1979. Tumor promotors inhibit metabolic cooperation in cocultures of epidermal and 3T3 cells.Biochem. Biophys. Res. Commun. 91:395–401

    PubMed  Google Scholar 

  • Musil, L.S., Beyer, E.C., Goodenough, D.A. 1990a. Expression of the gap junction protein connexin43 in embryonic chick lens: Molecular cloning, ultrastructural localization, and post-translational phosphorylation.J. Membrane Biol. 116:163–175

    Google Scholar 

  • Musil, L.S., Cunningham, B.A., Edelman, G.M., Goodenough, D.A. 1990b. Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and-deficient cell lines.J. Cell Biol. 111:2077–2088

    PubMed  Google Scholar 

  • Nonner, W.F., Loewenstein, W.R. 1989. Appendix: A growth control model with discrete regulatory centers.J. Cell Biol. 108:1063–1065

    Google Scholar 

  • Paul, D.L. 1986. Molecular cloning cDNA for rat liver gap junction protein.J. Cell Biol. 103:123–134

    PubMed  Google Scholar 

  • Reznikoff, C.A., Bertram, J.S., Brankow, D.W., Heidelberger, C. 1973. Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluence inhibition of cell division.Cancer Res. 33:3239–3249

    PubMed  Google Scholar 

  • Rogers, M., Berestecky, J.M., Hossain, M.Z., Guo, H., Kadle, R., Nicholson, B., Bertram, J.S. 1990. Retinoid-enhanced gap junctional communication is achieved by increased levels of connexin43 mRNA and protein.Mol. Carcinogen. 3:335–343

    Google Scholar 

  • Rosen, A., Van Der Merwe, P.A., Davidson, J.S. 1988. Effects of SV40 transformation on intercellular gap junctional communication in human fibroblasts.Cancer Res. 48:3485–3489

    PubMed  Google Scholar 

  • Schwartzmann, G.O.H., Wiegandt, H., Rose, B., Zimmerman, A., Ben-Haim, D., Loewenstein, W.R. 1981. The diameter of the cell-to-cell junctional membrane channels, as probed with neutral molecules.Science 213:551–553

    PubMed  Google Scholar 

  • Swenson, K.I., Piwnica-Worms, H., McNamee, H., Paul, D.L. 1990. Tyrosine phosphorylation of the gap junction protein connexin 43 accounts for the pp60v-src-induced inhibition of communication inXenopus oocyte pairs.Cell Reg. 1(13):989–1002

    Google Scholar 

  • Thomas, K.R., Capecchi, M.R. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells.Cell 51:503–512

    PubMed  Google Scholar 

  • Tso, J.Y., Sun, X.-H., Kao, T.-H., Reece, K.S., Wu, R. 1985. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: Genomic complexity and molecular evolution of the gene.Nucleic Acids Res. 13:2485–2502

    PubMed  Google Scholar 

  • Unwin, P.N.T., Zampighi, G. 1980. Structure of the junction between communicating cells.Nature 283:545–549

    PubMed  Google Scholar 

  • Yotti, L.P., Chang, C.C., Trosko, J.E. 1979. Elimination of metabolic cooperation in Chinese hamster cells by a tumor promoter.Science 206:1089–1091

    PubMed  Google Scholar 

  • Zhang, J.-T., Nicholson, B.J. 1989. Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA.J. Cell Biol. 109:3391–3401

    PubMed  Google Scholar 

  • Zhu, D., Caveney, S., Kidder, G.M., Naus, C.C.G. 1991. Transfection of C6 glioma cells with connexin 43 cDNA: Analysis of expression, intercellular coupling, and cell proliferation.Proc. Natl. Acad. Sci. USA 88:1883–1887

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, P.P., Hotz-Wagenblatt, A., Rose, B. et al. Incorporation of the gene for a cell-cell channel protein into transformed cells leads to normalization of growth. J. Membrain Biol. 124, 207–225 (1991). https://doi.org/10.1007/BF01994355

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01994355

Key Words

Navigation