Skip to main content
Log in

Mitotic and post mitotic consequences of genomic instability induced by oncogenic Ha-Ras

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Induced expression of a mutant human Ha-ras oncogene in NIH3T3 cells leads to the rapid production of multicentric chromosomes, acentric chromosome fragments, double minute chromosomes, increased heteroploidy, and increased capacity to undergo gene amplification. In this study we have used fluorescent-in-situ hybridization (FISH) to demonstrate that induction of the Ha-ras oncogene also leads to disruption of the mitotic machinery, resulting in aberrant mitoses and abnormal daughter cells. Cells induced to express an oncogenic Ha-ras transgene accumulate chromosomes that lag outside of the rest of the chromosomal architecture, chromosomes that form bridges between daughter nuclei at anaphase, and that form micronuclei. Many of these mitotic aberrations contain structurally abnormal chromosomes. Theseras-induced changes were suppressed by the introduction of a gene encoding the dominant negative effector ofras, raf 301. Expression ofraf301 in cells induced to express Ha-ras reduced the level of growth in soft agar, chromosome aberrations, mitotic aberrations, and frequency of gene amplification. These data provide evidence for an association between Ha-ras induced transformation, chromosome aberrations and gene amplification. Furthermore they offer insight into how the cell responds to the formation of aberrant chromosomes, and how disrupting chromosomal architecture could lead to further imbalances in the distribution of genetic material between daughter cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  1. Solomon, E., Borrow, J., and Goddard, A.D. (1991).Science,254:1153–1160.

    Google Scholar 

  2. Hartwell, L. (1992).Cell,71:543–546.

    Google Scholar 

  3. Schnipper, L. (1986).The New England Journal of Medicine,314:1423–1431.

    Google Scholar 

  4. Livingstone, L.R., White, A., Sprouse, J., Livanos, E., Jacks, T., and Tlsty, T.D. (1992).Cell,70:923–935.

    Google Scholar 

  5. Yin, Y., Tainsky, M.A., Bischoff, F.Z., Strong, L.C., and Wahl, G.M. (1992).Cell,70:937–948.

    Google Scholar 

  6. Lipkowitz, S., Garry, V.F., and Kirsch, I.R. (1992).Proc. Natl. Acad. Sci. USA,89:5301–5305.

    Google Scholar 

  7. Setlow, R.B. (1978).Nature,271:713–717.

    Google Scholar 

  8. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R.W. (1991).Cancer Research,51:6304–6311.

    Google Scholar 

  9. Parada, L., Tabin, C., Shih, C., and Weinberg, R. (1982).Nature,297:474–478.

    Google Scholar 

  10. Denko, N.C., Giaccia, A., Stringer, J.R., and Stambrook, P.J. (1994).Proc. Natl. Acad. Sci. USA,91:5124–5128.

    Google Scholar 

  11. Wani, M., Xu, X., and Stambrook, P.J. (1994).Cancer Research,54:2504–2508.

    Google Scholar 

  12. Bos, J. (1989).Cancer Research,49:4682–4689.

    Google Scholar 

  13. Boguski, M., and McCormick, F. (1993).Nature,366:643–653.

    Google Scholar 

  14. Bokoch, G.M., and Der, C.J. (1993).FASEB,7:750–759.

    Google Scholar 

  15. Gibbs, J.B., Sigal, I.S., Poe, M., and Scolnick, E.M. (1984).Proc. Natl. Acad. Sci. USA,81:5704–5708.

    Google Scholar 

  16. Johnson, G.L., and Vaillancourt, R.R. (1994).Current Opinions in Cell Biology,6:230–238.

    Google Scholar 

  17. Bruder, J.T., Heidicker, G., and Rapp, U.R. (1992).Genes and Development,6:545–556.

    Google Scholar 

  18. Hagag, N., Diamond, L., Palermo, R., Lyubsky, S. (1990).Oncogene,5:1481–1489.

    Google Scholar 

  19. Liu, H.S., Scrable, H., Villaret, D.B., Lieberman, M.A., and Stambrook, P.J. (1992).Cancer Research,52:983–989.

    Google Scholar 

  20. Sidranski, D., Tokino, T., Hamilton, S.R., Kinzler, K.W., Levin, B., Frost, P., and Vogelstein, B. (1992).Science,256:102–103.

    Google Scholar 

  21. McClintock, B. (1951).Cold Spring Harbor Symposia on Quantative Biology,16:13–47.

    Google Scholar 

  22. Koong, A.C., Chen, E.Y., Mivechi, N.F., Denko, N.C., Stambrook, P., and Giacca, A.J. (1994).Cancer Res.,54:5273–5279.

    Google Scholar 

  23. Weier, H.U., Zitzelsberger, H.F., Gray, J.W. (1991).Biotechniques,10:498–505.

    Google Scholar 

  24. Cornforth, M., and Goodwin, H. (1994).Radiation Research,126:210–217.

    Google Scholar 

  25. Nicklas, R.B., Krawitz, L.E., and Ward, S.C. (1993).J. Cell Sci.,104:961–973.

    Google Scholar 

  26. Gloushankova, N.A., Lyibonova, A.V., Tint, I.S., Feder, H.H., Vasiliev, J.M., and Gelfand, I.M. (1994).Proc. Natl. Acad. Sci. USA,91:8597–8601.

    Google Scholar 

  27. Dartsch, P.C., Ritter, M., Haussinger, M., and Lang, F. (1994).Europ. J. Cell. Sci.,63:316–325.

    Google Scholar 

  28. Windle, B., Draper, B.W., Yin, Y.X., O'Gorman, S., and Wahl, G.M. (1991).Genes and Development,5:160–174.

    Google Scholar 

  29. Willard, H.F. (1990).Trends in Genetics,6:410–416.

    Google Scholar 

  30. Haaf, T., Warburton, P.E., and Willard, H.F. (1992).Cell,70:681–696.

    Google Scholar 

  31. Earnshaw, W.C., Ratrie, H., and Stetten, G. (1989).Chromosoma,98:1–12.

    Google Scholar 

  32. Wandall, A. (1994).Chromosoma,103:56–62.

    Google Scholar 

  33. Nobes, C., and Hall, A. (1994).Curr. Opin. Genet. Dev.,5:77–81.

    Google Scholar 

  34. Matuoka, K., Shibasaki, F., Shibata, M., and Takenawa, T. (1993).EMBO J.,12:3467–3473.

    Google Scholar 

  35. Nelson, W.G., and Kastan, M.B. (1994).Molecular and Cellular Biology,14:1815–1823.

    Google Scholar 

  36. Smith, K.A., Stark, M.B., Gorman, P.A., and Stark, G.B. (1992).Proc. Natl. Acad. Sci. USA,89:5427–5431.

    Google Scholar 

  37. Toledo, F., Le Roscouet, D., Buttin, G., and Debatisse, M. (1992).EMBO,11:2665–2673.

    Google Scholar 

  38. Ma, C., Martin, S., Trask, B., and Hamlin, J.L. (1993).Genes and Development,7:605–620.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denko, N., Stringer, J., Wani, M. et al. Mitotic and post mitotic consequences of genomic instability induced by oncogenic Ha-Ras . Somat Cell Mol Genet 21, 241–253 (1995). https://doi.org/10.1007/BF02255779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255779

Keywords

Navigation