Skip to main content
Log in

From piecewise to full physiologic pharmacokinetic modeling: Applied to thiopental disposition in the rat

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Physiologically based pharmacokinetic modeling procedures employ anatomical tissue weight, blood flow, and steady tissue/blood partition data, often obtained from different sources, to construct a system of differential equations that predict blood and tissue concentrations. Because the system of equations and the number of variables optimized is considerable, physiologic modeling frequently remains a simulation activity where fits to the data are adjusted by eye rather than with a computer-driven optimization algorithm. We propose a new approach to physiological modeling in which we characterize drug diposition in each tissue separately using constrained numerical deconvolution. This technique takes advantage of the fact that the drug concentration time course, CT(t), in a given tissue can be described as the convolution of an input function with the unit disposition function (UDF T) of the drug in the tissue, (i.e., C T (t)=(C a (t)Q r )*UDF r (t) whereC a(t) is the arterial concentration,Q T is the tissue blood flow and * is the convolution operator). The obtained tissue unit disposition function (UDF) for each tissue describes the theoretical disposition of a unit amount of drug injected into the tissue in the absence of recirculation. From theUDF, a parametric model for the intratissue disposition of each tissue can be postulated. Using as input the product of arterial concentration and blood flow, this submodel is fit separately utilizing standard nonlinear regression programs. In a separate step, the entire body is characterized by reassembly of the individuals submodels. Unlike classical physiologic modeling the fit for a given tissue is not dependent on the estimates obtained for other tissues in the model. Additionally, because this method permits examination of individualUDF s, appropriate submodel selection is driven by relevant information. This paper reports our experience with a piecewise modeling approach for thiopental disposition in the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Variable:

Description and Units

Dose :

Administered dose, (μg)

A :

Dose normalized preexponential arterial time course coefficient (ml−1)

λ:

Exponential coefficient of arterial concentration time course (min−1)

τ:

Infusion duration (min)

t :

Time (min)

C :

Drug concentration in region, (μg/g region) or (μg/ml region)

Q :

Regional blood flow velocity, (ml/min per tissue)

J :

Flux of drug to tissue (μg/min per g)

Hct :

Hematocrit

K p :

Tissue to blood partition coefficient (ml blood/gm tissue)

ρ:

blood to plasma partition coefficient (ml plasma/ml blood)

δ:

Density of blood (g/ml blood)

UDF :

Unit disposition function of tissue

AUC UDF :

Area under the unit disposition function (min)

AUM UDF :

First moment of the unit disposition function (min2)

MST :

Mean sojourn time of drug across tissue (min)

X :

Mass of drug tissue or compartment (μg)

k :

Intratissue microrate constant (min−1)

V :

Apparent volume (ml/g tissue)

WT :

Tissue weight (g)

T:

Total tissue T

m :

Mesenteric organm

n :

Number of mesenteric organs excluding liver, or number of exponential phases in arterial concentration time course

i :

Tissue compartmenti or disposition phasei

ij :

From compartmenti to compartmentj, 0 denotes outside the tissue or body

p:

Arterial plasma

a:

Arterial blood

v:

Venous blood

Vasc:

Tissue capillary space

Paren:

Parencymal space

HA:

Hepatic artery

Portal:

Portal vein

Hepatic:

Total liver

References

  1. L. E. Gerlowski and R. K. Jain. Physiologically based pharmacokinetic modeling: Principles and applications.J. Pharm. Sci. 72:1103–1127 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. R. N. Upton. Regional pharmacokinetics. I Physiological and physiochemical basis.Biopharm. Drug. Dispos. 11:647–662 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. S. Björkman, D. R. Stanski, H. Harashima, R. Dowrie, S. R. Harapat, D. R. Wada, and W. F. Ebling. The tissue distribution of alfentanil and fentanyl in the rat is not blood flow limited.J. Pharmacokin. Biopharm. 21:255–279 (1993).

    Article  Google Scholar 

  4. D. Verotta. An inequality-constrained least squares deconvolution method.J. Pharmacokin. Biopharm. 17:269–287 (1989).

    Article  CAS  Google Scholar 

  5. D. J. Cutler. Linear systems analysis in pharmacokinetics.J. Pharmacokin. Biopharm. 6:265–282 (1978).

    Article  CAS  Google Scholar 

  6. D. Verotta, L. B. Shiener, W. F. Ebling, and D. R. Stanski. A semiparametric, approach to physiologic flow models.J. Pharmacokin. Biopharm 17:463–489 (1989).

    Article  CAS  Google Scholar 

  7. W. F. Ebling, L. Mills-Williams, S. R. Harapat, and D. R. Stanski: High-Performance liquid chromatographic method for determining thiopental concentrations in twelve rat tissues: Application to the physiologic modeling od disposition of barbiturate.J. Chromatog. 490:339–353 (1989).

    Article  CAS  Google Scholar 

  8. Y. Igari, T. Sugiyama, S. Awazu, and H. Hanano. Comparative physiologically based pharmacokinetics of hexobarbital, phenobarbital, and thiopental in the rat.J. Pharmacokin. Biopharm. 10:53–75 (1982).

    Article  CAS  Google Scholar 

  9. D. Z. D'Arginio and A. Schumitsky. A program package for simulation and parameter estimation in pharmacokinetic systems.Comput. Prog. Biomed. 9:115–134 (1979).

    Article  Google Scholar 

  10. H. Harashima, D. R. Stanski, E. Osaki, and W. F. Ebling. Dose dependent alteration of regional blood flow by thiopental anesthesia in the rat. Implications for physiological flow models of anesthetic disposition. The Sixth Japanese-American Conference on Pharmacokinetics and Biopharmaceutics. Aug. 2–4, Buffalo, NY, 1992.

  11. R. Schessler, K. E. Arfos, and K. Messmer. MIC II: A Program for determination of cardiac output, arterio-venous shunt and regional blood flow using radioactive microsphere method.Comput. Prog. Biomed. 9:19–38 (1979).

    Article  Google Scholar 

  12. M. A. Heyman, B. D. Payne, J. E. Hoffman, and A. M. Randolph. Blood flow measurements with radionuclide-labeled particles.Prog. Cardiovasc. Dis. 20:55–79 (1977).

    Article  Google Scholar 

  13. N. B. Everett, B. Simons, and E. P. Lasher. Distribution of blood (FE59) and plasma (I131) plasma volumes of rats determined by liquid nitrogen freezing.Circ. Res. 4:419–424 (1956).

    Article  CAS  PubMed  Google Scholar 

  14. W. O. Caster, J. Ponecelet, A. B. Simon, and W. D. Armstrong. Tissue weights of the rat: I Normal values determined by dissection and chemical methods.Proc. Soc. Exp. Bio. Med. 91:122–126 (1956).

    Article  CAS  Google Scholar 

  15. N. A. Lassen and W. Perl. The volume/flow and mass/flux ratio (mean transit time) II. Bolus injection. InTracer Kinetic Methods in Medical Physiology, Raven Press, New York, 1979, chap. 7.

    Google Scholar 

  16. K. Yamaoka, T. Nakagawa, and T. Uno. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations.J. Pharmacokin. Biopharm. 6:165–175 (1978).

    Article  CAS  Google Scholar 

  17. D. R. Wada, D. R. Stanski, and W. F. Ebling. A PC-based graphical simulator for physiological pharmacokinetic models. The Sixth Japanese-American Conference on Pharmacokinetics and Biopharmaceutics. Aug 2–4, Buffalo, NY, 1992.

  18. M. K. Angelo, K. B. Bischoff, A. B. Prichard and M. A. Presser. A physiological model for the pharmacokinetics of methylene chloride in B6C3F1 mice following IV Administrations.J. Pharmacokin. Biopharm. 12:413–436 (1984).

    Article  CAS  Google Scholar 

  19. W. H. Leung. Development and utilization of physiologically based pharmacokinetic models for toxicological applications.J. Toxicol. Environ. Heath 32:247–267 (1991).

    Article  CAS  Google Scholar 

  20. F. J. Halford. A critque of intravenous anesthesia in war surgery.Anesthesiology 4:67–69 (1943).

    Article  Google Scholar 

  21. R. C. Adams, and H. K. Gray. Intravenous anesthesia with pentothal sodium in case of gunshot wound associated with accompanying severe traumatic shock and loss of blood: report of a case.Anethesiology 4:70–73 (1943).

    Article  Google Scholar 

  22. M. J. Avram, T. C. Krejcie, and T. K. Henthorn. The relationship of age to the pharmacokinetics of early drug distribution: The concurrent disposition of thiopental and indocyanine green.Anesthesiology 72:403–411 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. D. R. Stanski and P. O. Maitre: Population pharmacokinetics and pharmacodynamics of thiopental: The effect of age revisited.Anesthesiology 72:714–724 (1990).

    Article  Google Scholar 

  24. M. J. Avram, R. Sanghvi, T. K. Henthorn, T. E. Krejcie, A. Shanks, R. J. Fragen, K. A. Howard and D. A. Kaczynski: Determinants of thiopental induction dose requirements.Anesth. Analg. 76:10–17 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. S. Björkman, J. Аkenson, F. Nilsson, K. Messeter, and B. Roth. Ketamine and midazolam decrease cerebral blood flow and consequently their own rate of transport to the brain: An application of mass balance pharmacokinetics with changing regional blood flow.J. Pharmacokin. Biopharm. 20:637–652 (1992).

    Article  Google Scholar 

  26. J. M. Gallo, F. C. Lam, and F. G. Perrier. Moment method for estimation of mass transfer coefficients for physiological pharmacokinetic models.Biopharm. Drug. Dispos.12:127–137 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. J. M. Gallo. Development and application of hybrid physiologically based pharmacokinetic models. Fourth Symposium in Frontiers in Pharmacokinetics and Pharmacodynamics. Little Rock, AK, March 1992.

  28. W. F. Ebling. From Piece-wise to global physiologic models applied to intravenous anesthetics. 4th Symposium in Frontiers in Pharmacokinetics and Pharmacodynamics. Little Rock, AK, March 1992.

  29. C.-H. Chou, A. M. Evnas, G. Fornasini, and M. Rowland. Relationship between lipophilicity and hepatic dispersion and distribution for a homologous series of barbiturates in the isolated perfusedin situ rat liver.Drug Metab. Dispos. 21:933–938 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by Grant RO1-AG04594 from the National Institute of Aging and the Anesthesia/Pharmacology Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebling, W.F., Wada, D.R. & Stanski, D.R. From piecewise to full physiologic pharmacokinetic modeling: Applied to thiopental disposition in the rat. Journal of Pharmacokinetics and Biopharmaceutics 22, 259–292 (1994). https://doi.org/10.1007/BF02353622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353622

Key Words

Navigation