Skip to main content
Log in

Genetic characterization and isolation of theSaccharomyces cerevisiae gene coding for uridine monophosphokinase

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We selected a 5-fluorouracil-resistant, thermosensitive mutant of the uridine monophosphokinase step inSaccharomyces cerevisiae. The mutant displays very weak thermolabile uridine monophosphokinase activity and wild-type uridine diphosphokinase activity. Growth of the mutant at the non-permissive temperature causes immediate reduction of pyrimidine triphosphate pools to 10% of the wild-type level as well as significantly lowering total RNA and protein synthesis. These conditions also provoke derepression of the first gene of the pathway,URA2, at both the levels of enzymatic activity and transcription. The mutation segregates independently of all known genes of the pyrimidine biosynthetic pathway. The corresponding gene has been isolated on a 4.8 kb fragment by complementation of the mutant phenotype. The new gene, namedURA6, codes for a 2.2 kb polyadenylated messenger RNA, exists in a single copy per haploid genome, and was mapped to the centromere of chromosome XI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beck C, Ingraham J, Maaloe O, Neuhard J (1973) Relationship between the concentration of nucleoside triphosphates and the rate of synthesis of RNA. J Mol Biol 78:117–121

    Article  PubMed  CAS  Google Scholar 

  • Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–108

    Article  PubMed  CAS  Google Scholar 

  • Bolivar F, Rodriguez RL, Green PJ, Betlach HC, Heynecker HL, Boyer HW (1977) Construction and characterization of new cloning vehicles II. A multipurpose cloning system. Gene 2:95–113

    Article  PubMed  CAS  Google Scholar 

  • Broach JR, Hicks JB (1980) Replication and recombination functions associated with the yeast plasmid, 2μ circle. Cell 21:501–508

    Article  PubMed  CAS  Google Scholar 

  • Chevallier MR, Bloch JC, Lacroute F (1980) Transcriptional and translational expression of a chimeric bacterial-yeast plasmid in yeast. Gene 11:11–19

    Article  PubMed  CAS  Google Scholar 

  • Ciriacy M (1975) Genetics of alcohol dehydrogenase inSaccharomyces cerevisiae. Part I: Isolation and genetic analysis of ADH mutants. Mutat Res 29:315–326

    Article  CAS  Google Scholar 

  • Clemmesen K, Bonekamp F, Karlström O, Jensen KF (1985) Role of translation in the UTP-modulated attenuation at thepyrBI operon ofEscherichia coli. Mol Gen Genet 201:247–251

    Article  PubMed  CAS  Google Scholar 

  • Cohen SN, Chiaeng ACY, Hsu L (1972) Non-chromosomal antibiotic resistance in bacteria: genetic transformation ofE. coli by R factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    Article  PubMed  CAS  Google Scholar 

  • Denis CL, Ciriacy M, Young ET (1981) A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase fromSaccharomyces cerevisiae. J Mol Biol 148:355–368

    Article  PubMed  CAS  Google Scholar 

  • Edlin G, Stent GS (1969) Nucleoside triphosphate pools and the regulation of RNA synthesis inE. coli. Proc Natl Acad Sci USA 62:475–482

    Article  PubMed  CAS  Google Scholar 

  • Elliott SG, McLaughlin CS (1979) Regulation of RNA synthesis in yeast III: Synthesis during the cell cycle. Mol Gen Genet 169:237–243

    Article  PubMed  CAS  Google Scholar 

  • Falco SC, Li Yuyang, Broach JR, Botstein D (1982) Genetic properties of chromosomally integrated 2 μ plasmid DNA in yeast. Cell 29:573–584

    Article  PubMed  CAS  Google Scholar 

  • Gillespie F, Spiegelman S (1965) A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol 12:829–842

    Article  PubMed  CAS  Google Scholar 

  • Ginther CL, Ingraham JL (1974) Cold-sensitive mutant ofSalmonella typhimurium defective in nucleoside diphosphokinase. J Bacteriol 118:1020–1026

    PubMed  CAS  Google Scholar 

  • Handschumacher RE (1960) Orotidylic acid decarboxylase: inhibition studies with azauridine 5′-phosphate. J Biol Chem 235:2917–2919

    PubMed  CAS  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Article  PubMed  CAS  Google Scholar 

  • Horowitz J, Chargaff E (1959) Massive incorporation of 5-fluorouracil into a bacterial ribonucleic acid. Nature 184:1213–1215

    Article  PubMed  CAS  Google Scholar 

  • Hynes NE, Phillips SL (1976) Turnover of polyadenylate-containing ribonucleic acid inSaccharomyces cerevisiae. J Bacteriol 125:595–600

    PubMed  CAS  Google Scholar 

  • Ingraham JL, Neuhard J (1972) Cold-sensitive mutants ofSalmonella typhimurium defective in uridine monophosphate kinase (pyr H). J Biol Chem 247:6259–6265

    PubMed  CAS  Google Scholar 

  • Johnston GC, Pringle JR, Hartwell LH (1977) Coordination of growth with cell division in the yeastSaccharomyces cerevisiae. Exp Cell Res 105:79–98

    Article  PubMed  CAS  Google Scholar 

  • Jones ME (1980) Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem 49:253–279

    Article  PubMed  CAS  Google Scholar 

  • Jund R, Lacroute F (1970) Genetic and physiological aspects of resistance to 5-fluoropyrimidines inSaccharomyces cerevisiae. J Bacteriol 102:607–615

    PubMed  CAS  Google Scholar 

  • Kaplan JG, Lacroute F, Messmer I (1969) On the loss of feedback inhibition of yeast aspartate transcarbamylase during derepression of pyrimidine biosynthesis. Arch Biochem Biophys 129:539–544

    Article  PubMed  CAS  Google Scholar 

  • Kudrna R, Edlin G (1975) Nucleotide pools and regulation of ribonucleic acid synthesis in yeast. J Bacteriol 121:740–742

    PubMed  CAS  Google Scholar 

  • Lacroute F (1968) Regulation of pyrimidine biosynthesis inSaccharomyces cerevisiae. J Bacteriol 95:824–842

    PubMed  CAS  Google Scholar 

  • Liljelund P, Losson R, Kammerer B, Lacroute F (1984) Yeast regulatory gene PPR1 II. Chromosomal localization, meiotic map, suppressibility, dominance/recessivity and dosage effect. J Mol Biol 180:251–265

    Article  PubMed  CAS  Google Scholar 

  • Losson R, Lacroute F (1981) Cloning of a eukaryotic regulatory gene. Mol Gen Genet 184:394–399

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurements with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maness P, Orengo A (1976) Activation of rat liver pyrimidine nucleoside monophosphate kinase. Biochim Biophys Acta 429:182–190

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Mortimer RK, Hawthorne DC (1966) Genetic mapping inSaccharomyces cerevisiae. Genetics 53:165–173

    PubMed  CAS  Google Scholar 

  • Munch-Petersen A, Neuhard J (1964) Studies on the acid-soluble nucleotide pool in thymine-requiring mutants ofEscherichia coli during thymine starvation. I. Accumulation of deoxyadenosine triphosphate inE. coli 15 TAU. Biochim Biophys Acta 80:542–551

    PubMed  CAS  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci USA 78:6354–6358

    Article  PubMed  CAS  Google Scholar 

  • Penn MD, Thireos G, Greer H (1984) Temporal analysis of general control of amino acid biosynthesis inSaccharomyces cerevisiae: role of positive regulatory genes in initiation and maintenance of mRNA derepression. Mol Cell Biol 4:520–528

    PubMed  CAS  Google Scholar 

  • Prescott M, Jones ME (1969) Modified methods for the determination of carbamyl aspartate. Anal Biochem 32:408–419

    Article  PubMed  CAS  Google Scholar 

  • Randerath K, Randerath E (1964) Ion-exchange chromatography of nucleotides on poly-(ethyleneimine)-cellulose thin layers. J Chromatogr 16:111–125

    Article  PubMed  CAS  Google Scholar 

  • Souciet JL (1984) Thèse d'État: Université de Strasbourg I

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) High frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Thomas PS (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201–5205

    Article  PubMed  CAS  Google Scholar 

  • Turnbough CL Jr, Hicks KL, Donahue JP (1983) Attenuation control of pyrBI operon expression inEscherichia coli K-12. Proc Natl Acad Sci USA 80:368–372

    Article  PubMed  CAS  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  PubMed  CAS  Google Scholar 

  • Waldron C, Lacroute F (1975) Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J Bacteriol 122:855–865

    PubMed  CAS  Google Scholar 

  • Wolcott JH, Ross C (1966) Orotidine 5′-phosphate decarboxylase from higher plants. Biochim Biophys Acta 122:532–534

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liljelund, P., Lacroute, F. Genetic characterization and isolation of theSaccharomyces cerevisiae gene coding for uridine monophosphokinase. Molec. Gen. Genet. 205, 74–81 (1986). https://doi.org/10.1007/BF02428034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428034

Key words

Navigation