Skip to main content
Log in

Alzheimer's drug design based upon an invertebrate toxin (anabaseine) which is a potent nicotinic receptor agonist

  • Articles from the ICINN 97 Conference
  • National Design of Drugs and Insecticides
  • Published:
Invertebrate Neuroscience

Abstract

Naturally occurring toxins can often serve as useful chemical tools for investigating signalling processes in nervous and other systems. Tetrodotoxin and alpha-bungarotoxin are prime examples of toxins which are widely used in neurobiological research. Some toxins may also become molecular models for designing new drugs. Usually drugs are small, non-peptide molecules, as these display better bioavailability, longer durations of action and are less likely to generate immune responses. The relatively large size and conformational flexibility of peptides and protein toxins makes them more challenging molecular models for rational drug design. This article considers a marine invertebrate toxin, anabaseine, and describes how manipulation of the structure of this alkaloid has provided a drug candidate which selectively stimulates mammalian brain alpha7 nicotinic receptors. Numerous anabaseine analogs were synthesized and subjected to a variety of pharmacological, behavioral and toxcicological tests. This led to the choice of GTS-21 (also known as 3-(2,4-dimethoxybenzylidene)-anabaseine or DMXBA), as a drug candidate for the treatment of Alzheimer's dementia. The chemical and pharmacological properties of GTS-21 are compared with those of the initial lead compound, anabaseine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abood, L. G., Reynolds, D. T., Booth, H. and Bidlock, J. M. (1981) Sites and mechanisms for nicotine's action in the brain.Neurosci. Behav. Rev.,5, 479–486.

    CAS  Google Scholar 

  • Arendash, G. W., Sengstock, G. J., Sanberg, P. R., and Kem, W. R. (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21.Brain Res.,674, 252–259.

    Article  PubMed  CAS  Google Scholar 

  • Arneric, S. P., Sullivan, J. P., and Williams, M. (1995) Neuronal nicotinic acetylcholine receptors. Novel targets for CNS therapeutics. Ch. 9, InPsychopharmacology: The Fourth Generation of Progress, ed. F. E. Bloom and D. J. Kupfer, pp. 95–110. New York: Raven Press.

    Google Scholar 

  • Bacq, Z. M. (1936) Les poisons des Nemertiens.Bull. Acad. R. Belg. Cl. Sci. (Ser. 5),22, 1072–1079.

    Google Scholar 

  • Bacq, Z. M. (1937). L'‘amphiporine’ et la ‘nemertine’, poisons des vers nemertiens.Arch. Int. Physiol.,44, 190–204.

    CAS  Google Scholar 

  • Bjugstad, K. B., Mahnir, V. M., Kem, W. R., and Arendash, G. W. (1996) Long-term treatment with GTS-21 or nicotine enhances water maze performance in aged rats without affecting the density of nicotinic receptor subtypes in neocortex.Drug Dev. Res.,39, 19–28.

    Article  CAS  Google Scholar 

  • Boksa, P., and Quirion, R. (1987) [3H]N-methyl-carbamylcholine, a new radioligand specific for nicotinic acetylcholine receptors in brain.Eur. J. Pharmacol.,139, 323–333.

    Article  PubMed  CAS  Google Scholar 

  • de Fiebre, C. M., Meyer, E. M., Henry, J. C., Muraskin, S. I., Kem, W. R., and Papke, R. L. (1995) Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-Dimethylaminocinnamylidine derivative (DMAC) is a selective agonist at neuronal nicotinic alpha 7/[125K] alpha-Bungarotoxin receptor subtypes.Mol. Pharmacol.,47, 164–171.

    PubMed  Google Scholar 

  • Jansson, A. M., Fuxe, K., Agnati, L. F., Kitayama, I., Harfstrand, A., Andersson, K., Goldstein, M. (1988) Chronic nicotine treatment counteracts the disappearance of tyrosine-hydroxylase-immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal dopamine system of the male rat after partial hemitransection.Brain Res.,455, 332–345.

    Article  Google Scholar 

  • Kem, W. R. (1971) A study of the occurrence of anabaseine inParanemertes and other nemertines.Toxicon,9, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Kem, W. R. (1973) Biochemistry of Nemertine Toxins, In:Marine Pharmacognosy: Marine Biotoxins as Probes of Cellular Function, ed. D. F. Martin and G. M. Padilla, pp. 37–84. Monographs on Cell Biology Series. New York: Academic Press.

    Google Scholar 

  • Kem, W. R. (1988a) Worm toxins. In:Handbook of Natural Toxins, Vol. 4, Marine Toxins and Venoms, ed. Marcel Dekker Tu, pp 253–378.

  • Kem, W. R. (1988b) Peptide chain toxins of marine animals. In:Biomedical Importance of Marine Organisms, ed. D. Fautin. Mem. Calif. Acad. Sci. 13, 69–83.

  • Kem, W. R., Abbott, B. C. and Coates, R. M. (1971) Isolation and structure of a hoplonemertine toxin.Toxicon,9, 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Kem, W. R., Scott, K. N. and Duncan, J. H. (1976) Hoplonemertine worms—a new source of pyridine neurotoxins.Experientia,32, 684–686.

    Article  PubMed  CAS  Google Scholar 

  • Kem, W. R., Mahnir, V. M., Bloom, L. B. and Gabrielson, B. J. (1994a) The active form of the nicotinic receptor agonist anabaseine is the cyclic iminium cation. 11th World Congress on Animal, Plant, and Microbial Toxins, Tel Aviv.

  • Kem, W. R., Mahnir, V. M., and Lin, B. (1994b) Interaction of DMXBA (GTS-21), a cognition-enhancing compound, with cholinergic receptors.Soc. Neurosci., Nov, 13–18.

  • Kem, W. R., Mahnir, V. M., Lin, B., and Prokai-Tatrai, K. (1996) Two primary GTS-21 metabolites are potent partial agonists at alpha7 nicotinic receptors expressed in theXenopus oocyte.J. Neurosci.,22, 268 (Abstr. 110.7)

    Google Scholar 

  • Kem, W. R., Mahnir, V. M., Papke, R. and Lingle, C. (1997) Anabaseine is a potent agonist upon muscle and neuronal alpha-bungarotoxin sensitive nicotinic receptors.J. Pharmacol. Exper. Therap.,283, 979–992.

    CAS  Google Scholar 

  • King, H. (1939) Amphiporine, an active base from the marine wormAmphiporus lactifloreus. J. Chem. Soc., 1365.

  • Lang, W., and Henke, H. (1983) Cholinergic receptor binding and autoradiography in brains of non-neurological and senile dementia of Alzheimer-type patients.Brain Res.,267, 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Machu, T. K., Strahlendorf, J., and Kem, W. R. (1996) Nicotinic receptor ligands antagonize 5-HT3 receptors expressed inXenopus oocytes.J. Neurosci.,22, (Abstr.).

  • Mahnir, V. M., Lin, B., Prokai-Tatrai, K., and Kem, W. R. (1998) Pharmacokinetics and urinary excretion of DMXBA (GTS-21), a compound enhancing cognition.Biopharm. Drug. Disp. (in press).

  • Martin, E. J., Panickar, K. S., King, M. A., Deyrup, M., Hunter, B. E., Wang, G., and Meyer, E. M. (1994) Cytoprotective actions of 2,4-dimethoxybenzylidene anabaseine in differentiated PC12 cells and septal cholinergic neurons.Drug Dev. Res.,31, 135–141.

    Article  CAS  Google Scholar 

  • Meyer, W. M., De Fiebre, C. M., Hunter, B. E., Simpkins, C. E., Frauworth, N., and DeFiebre, N. E. (1994) Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behaviors.Drug Dev. Res.,31, 127–134.

    Article  CAS  Google Scholar 

  • Newhouse, P. A., Potter, A., and Lenox, R. H. (1993) The effects of nicotinic agents on human cognition: possible therapeutic applications in Alzheimer's and Parkinson's Diseases.Med. Chem. Res.,2, 628–642.

    CAS  Google Scholar 

  • Orr-Urtreger, A., Goldner, F. M., Saeki, M., Lorenze, I., Goldberg, L., De Biasi, M., Dani, J. A., Patrick, J. W., and Beaudet, A. L. (1997) Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents.J. Neurosci.,17, 9165–9171.

    PubMed  CAS  Google Scholar 

  • Papke, R. L., de Fiebre, C. M., Kem, W. R., and Meyer, E. M. (1994) The subunit specific effects of novel anabaseine-derived nicotinic agents. InAlzheimer Disease: Therapeutic Strategies, ed. E. Giacobini and R. Becker, pp 206–211 Boston: Birkhauser.

    Google Scholar 

  • Picciotto, M. R., Zoll, M., Lena, C., Bessis, A., Lallemand, Y., LeNovere, N., Vincent, P., Pich, E. M., Brulet, P., and Changeux, J.-P. (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain.Nature,374, 65–67.

    Article  PubMed  CAS  Google Scholar 

  • Spath, E., and Mamoli, L. (1936) Eine Neue Synthese DesD,L-Anabasins.Chem. Ber.,69, 1082–1085.

    Google Scholar 

  • Stevens, K. E., Kem, W. R., Mahnir, V. M., and Freedman, R. (1998) Selective alpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice.Psychopharmacol. (in press).

  • Sugaya, K., Gicaobini, E., and Chiappinelli, V. A. (1990) Nicotinic acetylcholine receptor subtypes in human frontal cortex: changes in Alzheimer's disease.J. Neurosci. Res.,27, 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Summers, K., Kem, W. R., and Giacobini, E. (1997) Nicotinic agonist modulation of neurotransmitter levels in the rat frontoparietal cortex.Jap. J. Pharmacol.,74, 139–146.

    PubMed  CAS  Google Scholar 

  • Wheeler, J. W., Olubajo, O., Storm, C. B., and Duffield, R. M. (1981) Anabaseine: venom alkaloid ofAphaenogaster ants.Science,211, 1051–1052.

    CAS  PubMed  Google Scholar 

  • Whitehouse, R. J., Price, D. L., Clark, A. W., Coyle, J. T., and DeLong, M. R. (1986) Nicotinic acetylcholine binding in Alzheimer's disease.Brain Res.,371, 146–151.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff-Pak, D. S., Li, Y-T., Kazmi, A., and Kem, W. R. (1994a) Nicotinic cholinergic system involvement in eyeblink classical conditioning in rabbits.Behav. Neurosci.,108, 486–493.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff-Pak, D. S., Li, Y-T., and Kem, W. R. (1994b) A nicotinic receptor agonist (GTS-21), eyeblink classical conditioning, and nicotinic receptor binding in rabbit brain.Brain Res.,645, 309–317.

    Article  PubMed  CAS  Google Scholar 

  • Zoltewicz, J. A., Bloom, L. B. and Kem, W. R. (1989) Quantitative determination of the ring-chain hydrolysis equilibrium constant for anabaseine and related tobacco alkaloids.J. Org. Chem.,54, 4462–4468.

    Article  CAS  Google Scholar 

  • Zoltewicz, J. A., Prokai-Tatrai, K., Bloom, L. B. and Kem, W. R. (1993) Long range transmission of polar effects of cholinergic 3-arylideneanabaseines. Conformations molecular modelling.Heterocycles,35, 171–179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Kem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kem, W.R. Alzheimer's drug design based upon an invertebrate toxin (anabaseine) which is a potent nicotinic receptor agonist. Invertebrate Neuroscience 3, 251–259 (1997). https://doi.org/10.1007/BF02480382

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480382

Key Words

Navigation