Skip to main content
Log in

Cytoplasmic acidosis induces multiple conductance states in ATP-sensitive potassium channels of cardiac myocytes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We studied the effect of cytoplasmic acidosis on the ionic conducting states of ATP-sensitive potassium channels in heart ventricular cells of guinea pigs and rabbits by using a patch-clamp technique with inside-out patch configuration. Under normal conditions (pH 7.4), the channel alternated between a closed state and a main open state in the absence of nucleotides on the cytoplasmic side. As internal pH was reduced below 6.5, the single channel current manifested distinct subconductance levels. The probability of the appearance of these subconductance levels was pH dependent with a greater probability of subconductance states at lower pH. A variance-mean amplitude analysis technique revealed two subconductance levels approximately equally spaced between the main open level and the closed level (63 and 33%). A current-voltage plot of the two subconductance levels and the main level showed that they had similar reversal potentials and rectification properties. An intrinsic flickering gating property characteristic of these ATP-sensitive channels was found unchanged in the 63% subconductance state, suggesting that this subconductance state and the main conductance state share similar ion pore properties (including ion selection and block) and similar gating mechanisms. The appearance of the subconductance states decreased as ionic strength was increased, and the subconductance states were also slightly voltage dependent, suggesting an electrostatic interaction between the protons and the negative surface charge in the vicinity of the binding sites, which may be close to the inner entrance of the ion pore. Proteolytic modification of the channel on the cytoplasmic side with trypsin did not abolish the subconductance levels. External acidosis did not induce subconductance levels. These results suggest that protons bound to the negatively charged group at the inner entrance of the channel ion pore may induce conformational changes, leading to partially reduced conductance states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashcroft, F.M. 1988. Adenosine 5′-triphosphate-sensitive potassium channels.Annu. Rev. Neurosci. 11:97–118

    Article  CAS  Google Scholar 

  • Ashcroft, S.J.H., Ashcroft, F.M. 1990. Properties and functions of ATP-sensitive K-channels.Cell. Signall. 2:197–214

    Article  CAS  Google Scholar 

  • Babenko, A.P., Samoilov, V.O., Kazantseva, S.T., Shevchenko, Y.L. 1992. ATP-sensitive K+-channels in the human adult ventricular cardiomyocytes membrane.FEBS Lett. 313:148–150

    Article  CAS  Google Scholar 

  • Bezanilla, F., Armstrong, C.M. 1977. Inactivation of the sodium channel I. Sodium current experiments.J. Gen. Physiol. 70:549–566

    Article  CAS  Google Scholar 

  • Christensen, O., Zeuthen, T. 1987. Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential.Pfluegers Arch. 408:249–259

    Article  CAS  Google Scholar 

  • Cook, D.L., Ikeuchi, M., Fujimoto, W.Y. 1984. Lowering of pHi inhibits Ca2+-activated K+ channels in pancreatic β-cells.Nature 311:269–271.

    Article  CAS  Google Scholar 

  • Cuevas, J., Bassett, A.L., Cameron, J.S., Furukawa, T., Myerburg, R.J., Kimura, S. 1991. Effect of H+ on ATP-regulated K+ channels in feline ventricular myocytes.Am. J. Physiol. 261:H755-H761

    CAS  PubMed  Google Scholar 

  • Dani, J.A., Fox, J.A. 1991. Examination of subconductance levels arising from a single ion channel.J. Theor. Biol. 153:401–423

    Article  CAS  Google Scholar 

  • Davies, N.W. 1990. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons.Nature 343:375–377

    Article  CAS  Google Scholar 

  • Davies, N.W., Standen, N.B., Stanfield, P.R. 1991. ATP-dependent potassium channels of muscle cells: their properties, regulation, and possible functions.J. Bioenerg. Biomembrane 23:509–535

    Article  CAS  Google Scholar 

  • Davies, N.W., Standen, N.B., Stanfield, P.R. 1989. Multiple blocking mechanisms of ATP-sensitive potassium channels of frog skeletal muscle by tetraethylammonium ions.J. Physiol. 413:31–47

    Article  CAS  Google Scholar 

  • Davies, N.W., Standen, N.B., Stanfield, P.R. 1992. The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle.J. Physiol. 445:549–568

    Article  CAS  Google Scholar 

  • El-Sherif, N., Fozzard, H.A., Hanck, D.A. 1992. Dose-dependent modulation of the cardiac sodium channel by the sea anemone toxin ATXII.Circ. Res. 70:285–301

    Article  CAS  Google Scholar 

  • Fabiato, A., Fabiato, F. 1979. Calculator programs for computing the composition of the solutions containing multiple metals and ligand used for experiments in skinned muscle cells.J. Physiol. (Paris) 75:463–505

    CAS  Google Scholar 

  • Fan, Z., Makielski, J.C. 1993. Intracellular H+ and Ca2+ modulation of trypsin-modified ATP-sensitive K+ channels in rabbit ventricular myocytes.Circ. Res. 72:715–722

    Article  CAS  Google Scholar 

  • Fan, Z., Nakayama, K., Hiraoka, M. 1990a. Multiple actions of pinacidil on adenosine triphosphate-sensitive potassium channels in guinea-pig ventricular myocytes.J. Physiol. 430:273–295

    Article  CAS  Google Scholar 

  • Fan, Z., Nakayama, K., Hiraoka, M. 1990b. Pinacidil activates the ATP-sensitive K+ channel in inside-out and cell-attached patch membranes of guinea-pig ventricular myocytes.Pfluegers Arch. 415:387–394

    Article  CAS  Google Scholar 

  • Fox, J.A. 1987. Ion channel subconductance states.J. Membrane Biol. 97:1–8

    Article  CAS  Google Scholar 

  • Furukawa, T., Fan, Z., Sawanobori, T., Hiraoka, M. 1993. Modification of the adenosine 5′-triphosphate-sensitive K+ channel by trypsin in guinea-pig ventricular myocytes.J. Physiol. 466:707–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillis, K.D., Gee, W.M., Hammoud, A., McDaniel, M.L., Falke, L.C., Misler, S. 1989. Effects of sulfonamides on a metabolite-regulated ATP-sensitive K+ channel in rat pancreatic β-cells.Am. J. Physiol. 257:C119-C1127

    Article  Google Scholar 

  • Hill, J.A., Coronado, R., Strauss, H.C. 1990. Open-channel subconductance state of K+ channel from cardiac sarcoplasmic reticulum.Am. J. Physiol. 258:H159-H164

    PubMed  Google Scholar 

  • Hille, B. 1975. Ionic selectivity, saturation, and block in sodium channels: a four barrier model.J. Gen. Physiol. 66:535–560

    Article  CAS  Google Scholar 

  • Horie, M., Irisawa, H., Noma, A. 1987. Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells.J. Physiol. 387:251–272

    Article  CAS  Google Scholar 

  • Hoshi, T., Zagotta, W.N., Aldrich, R.W. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation.Science 250:533–538

    Article  CAS  Google Scholar 

  • Ito, H., Vereecke, J., Carmeliet, E. 1992. Intracellular protons inhibit inward rectifier K+ channel of guinea-pig ventricular cell membrane.Pfluegers Arch. 422:280–286

    Article  CAS  Google Scholar 

  • Kakei, M., Noma, A., Shibasaki, T. 1985. Properties of adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells.J. Physiol. 363:441–462

    Article  CAS  Google Scholar 

  • Matsuda, H. 1988. Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guineapig heart cells.J. Physiol. 397:237–258

    Article  CAS  Google Scholar 

  • Matsuda, H., Noma, A. 1989. Triple-barrel structure of inwardly rectifying K+ channels revealed by Cs+ and Rb+ block in guinea-pig heart cells.J. Physiol. 413:139–157

    Article  CAS  Google Scholar 

  • Miller, C. 1982. Open-state substructure of single chloride channels fromTorpedo electroplax.Phil. Trans. R. Soc. Lond. B 299:401–411

    Article  CAS  Google Scholar 

  • Miller, C., White, M. 1984. Dimeric structure of single chloride channels fromTorpedo electroplax.Proc. Natl. Acad. Sci. USA 81:2772–2775

    Article  CAS  Google Scholar 

  • Misler, S., Gillis, K., Tabcharani, J. 1989. Modulation of gating of a metabolically regulated, ATP-dependent K+ channel by intracellular pH in β cells of the pancreatic islet.J. Membrane Biol. 109:135–143

    Article  CAS  Google Scholar 

  • Moody, W. 1984. Effects of intracellular H+ on the electrical properties of excitable cells.Annu. Rev. Neurosci. 7:257–278

    Article  Google Scholar 

  • Nichols, C.G., Lederer, W.G. 1991. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system.Am. J. Physiol. 261:H1675-H1686

    CAS  PubMed  Google Scholar 

  • Nichols, C.G., Lopatin, A.N. 1993. Trypsin and α-chymotrypsin treatment abolishes glibenclamide sensitivity of KATP channels in rat ventricular myocytes.Pfluegers Arch. 422:617–619

    Article  CAS  Google Scholar 

  • Patlak, J.B. 1988. Sodium channel subconductance levels measured with a new variance-mean analysis.J. Gen. Physiol. 92:413–430

    Article  CAS  Google Scholar 

  • Pietrobon, D., Prod'hom, B., Hess, P. 1989. Interactions of protons with single open L-type calcium channels.J. Gen. Physiol. 94:1–21

    Article  CAS  Google Scholar 

  • Prod'hom, B., Pietrobon, D., Hess, P. 1989. Interactions of protons with single open L-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of perment ion.J. Gen. Physiol. 94:23–42

    Article  CAS  Google Scholar 

  • Qin, D., Takano, M., Noma, A. 1989. Kinetics of ATP-sensitive K+ channel revealed with oil gate concentration jump method.Am. J. Physiol. 257:H1624-H1633

    CAS  PubMed  Google Scholar 

  • Quayle, J.M., Standen, N.B., Stanfield, P.R. 1988. The voltage-dependent block of ATP-sensitive potassium channels of frog skeletal muscle by caesium and barium ions.J. Physiol. 405:677–697

    Article  Google Scholar 

  • Schild, L., Ravindran, A., Moczydlowski, E. 1991. Zn2+-induced subconductance events in cardiac Na+ channels prolonged by batrachotoxin-current voltage behavior and single-channel kinetics.J. Gen. Physiol. 97:117–142

    Article  CAS  Google Scholar 

  • Spruce, A.E., Standen, N.B., Stanfield, P.R. 1987. Studies of the unitary properties of adenosine-5′-triphosphate-regulated potassium channels of frog skeletal muscle.J. Physiol. 382:213–236

    Article  CAS  Google Scholar 

  • Standen, N.B., Pettit, A.I., Davies, N.M., Stanfield, P.R. 1992. Activation of ATP-dependent K+ currents in intact skeletal muscle fibres by reduced intracellular pH.Proc. R. Soc. Lond. [Biol.] 247:195–198

    Article  CAS  Google Scholar 

  • Sunami, A., Sasano, T., Matsunaga, A., Fan, Z., Sawanobori, T., Hiraoka, M. 1993. Properties of veratridine-modified single Na+ channels in guinea pig ventricular myocytes.Am. J. Physiol. 264:H454-H463

    CAS  PubMed  Google Scholar 

  • Takeda, K., Trautmann, A. 1984. A patch-clamp study of the partial agonist actions of tubocurarine on rat myotubes.J. Physiol. 349:353–374

    Article  CAS  Google Scholar 

  • Undrovinas, A.I., Burnashev, N., Eroshenko, D., Fleiderish, I., Starmer, C.F., Makielski, J.C., Rosenshtraukh, L.V. 1990. Quinidine blocks adenosine 5′-triphosphate-sensitive potassium channels in heart.Am. J. Physiol. 259:H1609-H1612

    CAS  PubMed  Google Scholar 

  • Weik, R., Lönnendonker, U., Neumcke, 1989. Low-conductance states of K+ channels in adult mouse skeletal muscle.Biochim. Biophys. Acta 983:127–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Z., Furukawa, T., Sawanobori, T. et al. Cytoplasmic acidosis induces multiple conductance states in ATP-sensitive potassium channels of cardiac myocytes. J. Membrain Biol. 136, 169–179 (1993). https://doi.org/10.1007/BF02505761

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505761

Key words

Navigation