Skip to main content
Log in

Elevation of glutathione levels and glutathione S-transferase activity in arsenic-resistant chinese hamster ovary cells

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Arsenic-resistant Chinese hamster ovary (CHO) cells were established by progressively increasing the concentration of sodium arsenite in culture medium. One of the resistant clones, SA7, was also cross-resistant to As(V), Zn, Fe(II), Co, and Hg. The susceptibilities to sodium arsenite in parental CHO cells, revertant SA7N cells, and resistant SA7 cells were correlated with their intracellular glutathione (GSH) levels and glutathione S-transferase (GST) activity. The resistance in SA7 cells was diminished by depletion of GSH in cells after treatment with buthionine sulfoximine. Furthermore, after reexposure of revertant SA7N cells to sodium arsenite, the intracellular GSH levels, GST activity, and resistance to sodium arsenite were raised to the same levels as SA7 cells. These data indicate that the elevation of intracellular GSH levels and GST activity in SA7 cells may be responsible for the resistance to arsenite. A p25 protein, which could be a monomer subunit of GST, accumulated in SA7 cells. In addition, an outward transport inhibitor, verapamil, indiscriminately increased the arsenite toxicity in resistant and parental cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Leonard, A.; Lauwerys, R. R. Carcinogenicity, teratogenicity and mutagenicity of arsenic. Mutat. Res. 75:49–62; 1980.

    PubMed  CAS  Google Scholar 

  2. International Agency for Research on Cancer. Carcinogenesis of arsenic and arsenic compounds. IARC Monogr. Eval. Carcinog. Risk Hum. 23:37–141; 1980.

    Google Scholar 

  3. Chen, C. J.; Chuang, Y. C.; Lin, T. M., et al. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res. 45:5895–5899; 1985.

    PubMed  CAS  Google Scholar 

  4. Ishinishi, N.; Yamamoto, A.; Hisanaga, A., et al. Tumorigenicity of arsenic trioxide to the lung in Syrian golden hamsters by intermittent instillations. Cancer Lett. 21:141–147; 1983.

    Article  PubMed  CAS  Google Scholar 

  5. Nakamuro, K.; Sayato, Y. Comparative studies of chromosomal aberration induced by trivalent and pentavalent arsenic. Mutat. Res. 88: 73–80; 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Larramendy, M. L.; Popescu, N. C.; DiPaolo, J. A. Induction by inorganic metal salts of sister chromatid exchanges and chromosome aberrations in human and Syrian hamster cell strains. Environ. Mutagen. 3:597–606; 1981.

    Article  CAS  Google Scholar 

  7. Lee, T. C.; Oshimura, M.; Barrett, J. C. Comparison of arsenic-induced cell transformation, cytotoxicity, mutation and cytogenetic effects in Syrian hamster embryo cells in culture. Carcinogenesis 6:1421–1426; 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, T. C.; Lee, K. C. C.; Chang, C., et al. Cell-cycle dependence of the cytotoxicity and clastogenicity of sodium arsenite in Chinese hamster ovary cells. Bull. Inst. Zool. Acad. Sin. 25:91–97; 1986.

    CAS  Google Scholar 

  9. Lee, T. C.; Jan, K. Y.; Wang, T. C. Induction of sister chromatid exchanges by arsenic in primary rat tracheal epithelial cells. Bull. Inst. Zool. Acad. Sin. 27:105–119; 1988.

    Google Scholar 

  10. Sunderman, F. W. Mechanisms of metal carcinogens. Biol. Trace Elements Res. 1:53–86; 1979.

    Google Scholar 

  11. Rossman, T. G.; Stone, D.; Molina, M., et al. Absence of arsenite mutagenicity inE. coli and Chinese hamster ovary cells. Environ. Mutagen. 2:371–379; 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, T. C.; Huang, R. Y.; Jan, K. Y. Sodium arsenite enhanced the cytotoxicity, clastogenicity, and 6-thioguanine-resistant mutagenicity of ultraviolet light in Chinese hamster ovary cells. Mutat. Res. 148:83–89; 1985.

    PubMed  CAS  Google Scholar 

  13. Lee, T. C.; Wang-Wuu, S.; Huang, R. Y., et al. Differential effects of pre- and posttreatment of sodium arsenite on the genotoxicity of methyl methanesulfonate in Chinese hamster ovary cells. Cancer Res. 46:1854–1857; 1986.

    PubMed  CAS  Google Scholar 

  14. Cohn, V. H.; Lyle, J. A fluorometric assay for glutathione. Anal. Biochem. 14:434–440; 1966.

    Article  PubMed  CAS  Google Scholar 

  15. Habig, W. H.; Pabst, M. J.; Jakoby, W. B. Glutathione S-transferase. J. Biol. Chem. 249:7130–7139; 1974.

    PubMed  CAS  Google Scholar 

  16. Taylor, J. B.; Vidal, A.; Torpier, G., et al. The glutathione transferase activity and tissue distribution of a cloned Mr28K protective antigen ofSchistosoma mansoni. EMBO J. 7:456–472; 1988.

    Google Scholar 

  17. Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, A. L.; Tew, K. D. Increased glutathione S-transferase activity in a cell line with acquired resistance to nitrogen mustards. Cancer Treat. Rep. 69:677–682; 1985.

    PubMed  CAS  Google Scholar 

  20. Robson, C. N.; Alexander, J.; Harris, A., et al. Isolation and characterization of a Chinese hamster ovary cell line resistant to bifunctional nitrogen mustards. Cancer Res. 46:6290–6294; 1986.

    PubMed  CAS  Google Scholar 

  21. Robson, C. N.; Lewis, A. D.; Wolf, C. R., et al. Reduced levels of drug-induced DNA cross-linking in nitrogen mustard-resistant Chinese hamster ovary cells expressing elevated glutathione S-transferase activity. Cancer Res. 47:6022–6027; 1987.

    PubMed  CAS  Google Scholar 

  22. Asmad, S.; Okine, L.; Le, B., et al. Elevation of glutathione in phenylalanine mustard-resistant murine L1210 leukemia cells. J. Biol. Chem. 262:15048–15053; 1987.

    Google Scholar 

  23. Squibb, K. S.; Fowler, B. A. The toxicity of arsenic and its compounds. In: Fowler, B. A., ed. Biological and environmental effects of arsenic. Amsterdam: Elsevier; 1983:233–269.

    Google Scholar 

  24. Tsurno, T.; Iida, H.; Tsukagoshi, S., et al. Overcoming of vincristine resistance in P388 leukemia, in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41:1967–1972; 1981.

    Google Scholar 

  25. Mannervik, B.; Alin, P.; Guthenberg, C., et al. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc. Natl. Acad. Sci. USA 82:7202–7206; 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Rogan, A. M.; Hamilton, T. C.; Young, R. C., et al. Reversal of adriamycin resistance by verapamil in human ovarian cancer. Science 224:994–996; 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Fojo, A.; Akiyama, S.; Gottesman, M. M., et al. Reduced drugresistant human KB carcinoma cell lines. Cancer Res. 45:3002–3007; 1985.

    PubMed  CAS  Google Scholar 

  28. Juliano, R. L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochem. Biophys. Acta 455:152–162; 1976.

    Article  PubMed  CAS  Google Scholar 

  29. Rosen, B. P.; Weigel, U.; Karkaria, C., et al. Molecular characterization of an anion pump. J. Biol. Chem. 263:3067–3070; 1988.

    PubMed  CAS  Google Scholar 

  30. Ochi, T.; Otsuka, F.; Takahashi, K., et al. Glutathione and metallothioneins as cellular defense against cadmium toxicity in cultured Chinese hamster cells. Chem.-Biol. Interact. 65:1–14; 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Jan, K. Y.; Huang, R. Y.; Lee, T. C. Different mode of action of sodium arsenite, 3-aminobenzamide, and caffeine on the enhancement of ethyl methanesulfonate clastogenicity. Cytogenet. Cell Genet., 41:202–208; 1986.

    PubMed  CAS  Google Scholar 

  32. Lee, T. C.; Lee, K. C. C.; Tzeng, Y. J., et al. Sodium arsenite potentiates the clastogenicity and mutagenicity of DNA crosslinking agents. Environ. Mutagen 8:119–128; 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grant NSC77-0201-B001-31 from the National Science Council, Republic of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.C., Wei, M.L., Chang, W.J. et al. Elevation of glutathione levels and glutathione S-transferase activity in arsenic-resistant chinese hamster ovary cells. In Vitro Cell Dev Biol 25, 442–448 (1989). https://doi.org/10.1007/BF02624629

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624629

Key words

Navigation