Skip to main content
Log in

The α7 nicotinic acetylcholine receptor in neuronal plasticity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A growing body of evidence indicates that neuronal nicotinic acetylcholine receptors (nAChRs), in addition to promoting fast cholinergic transmission, may modulate other neuronal activities within the central nervous system (CNS). In particular, the α7 nAChR is highly permeable to Ca2+ and may serve a distinct role in regulating neuronal plasticity. By elevating intracellular Ca2+ levels in discrete neuronal locations, these ligand-gated ion channels may influence numerous physiological processes in developing and adult CNS. In this article, we review evidence that both pre- and postsynaptic α7 nAChRs modulate transmitter release in the brain and periphery through Ca2+-dependent mechanisms. The possible role of α7 nAChRs in regulating neuronal growth and differentiation in developing CNS is also evaluated. We consider an interaction between cholinergic and glutamatergic transmission and propose a hypothesis on the possible coregulation of intracellular Ca2+ byN-methyl-d-aspartate (NMDA) receptors and α7 nAChRs. Finally, the clinical significance of alterations in the normal function of α7 nAChRs is discussed as it pertains to prenatal nicotine exposure, schizophrenia, and epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lipton S. A. and Kater S. B. (1989) Neurotransmitter regulation of neuronal outgrowth, platicity and survival.TINS 12, 265–270.

    PubMed  CAS  Google Scholar 

  2. Leslie F. M. (1993) Neurotransmitters as neurotrophic factors, inNeurotrophic Factors (Loughlin S. E. and Fallon J. H., eds.) Academic, New York, pp. 565–598.

    Google Scholar 

  3. Levitt P., Harvey J. A., Friedman E., Simansky K., and Murphy E. H. (1997) New evidence for neurotransmitter influences on brain development.Trends Neurosci. 20, 269–274.

    PubMed  CAS  Google Scholar 

  4. Kater S. B. and Mills L. R. (1991) Regulation of growth cone behavior by calcium.J. Neurosci. 11, 891–899.

    PubMed  CAS  Google Scholar 

  5. Bear M. F. and Singer W. (1986) Modulation of visual cortical plasticity by acetylcholine and noradrenaline.Nature 320, 172–176.

    PubMed  CAS  Google Scholar 

  6. Hohmann C. F., Brooks A. R., and Coyle J. T. (1988) Neonatal lesions of the basal forbrain cholinergic neurons result in abnormal cortical development.Dev. Brain Res. 42, 253–264.

    Google Scholar 

  7. Juliano S. L., Ma W., and Elsin D. (1991) Cholinergic depletion prevents expansion of topographic maps in somatosensory cortex.Proc. Natl. Acad. Sci. USA 88, 780–784.

    PubMed  CAS  Google Scholar 

  8. Juliano S. L. (1998) Mapping the sensory mosaic.Science 279, 1653–1654.

    PubMed  CAS  Google Scholar 

  9. Gu Q. and Singer W. (1989) The role of muscarinic acetylcholine receptors in ocular dominance plasticity.Experientia 57, 305–314.

    CAS  Google Scholar 

  10. Role L. W. and Berg D. K. (1996) Nicotinic receptors in the development and modulation of CNS synapses.Neuron 16, 1077–1085.

    PubMed  CAS  Google Scholar 

  11. Couturier S., Bertrand, D., Matter J. M., Hernandez M. C., Bertrand S., Millar N., et al. (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX.Neuron 5, 847–856.

    PubMed  CAS  Google Scholar 

  12. Clarke P. B. S. (1992) The fall and rise of neuronal α-bungarotoxin binding proteins.TINS 13, 407–413.

    CAS  Google Scholar 

  13. Deneris E. S., Connolly J., Rogers S. W., and Duvoisin R. (1991) Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors.Trends Pharmacol. Sci. 12, 34–40.

    PubMed  CAS  Google Scholar 

  14. Sargent P. B. (1993) The diversity of neuronal nicotinic acetylcholine receptors.Annu. Rev. Neurosci. 16, 403–443.

    PubMed  CAS  Google Scholar 

  15. Patrick J., Sequela P., Vernino, S., Amador M., Luetje C., and Dani J. A. (1993) Functional diversity of neuronal nicotinic acetylcholine receptors.Prog. Brain Res. 98, 113–120.

    PubMed  CAS  Google Scholar 

  16. McGehee D. S. and Role L. W. (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons.Annu. Rev. Physiol. 57, 521–546.

    PubMed  CAS  Google Scholar 

  17. Albuquerque E. X., Alkondon M., Pereira E. F. R., Castro N. G., Schrattenholz A., Barbosa, C. T. F., et al. (1997) Properties of neuronal nicotinic acetylcholine receptors pharmacological characterization and modulation of synaptic function.J. Pharm. Exp. Ther. 280, 1117–1136.

    CAS  Google Scholar 

  18. Wonnacott S. (1997) Presynaptic nicotinic ACh receptors.Trends Neurosci. 20, 92–98.

    PubMed  CAS  Google Scholar 

  19. Changeux J. P., Bertrand D., Corringer P. J., Dehaene S., Edelstein S., Lena C., et al. (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement.Brain Res. Brain Res. Rev. 26, 198–216.

    PubMed  CAS  Google Scholar 

  20. Gerzanich V., Anand R., and Lindstrom J. (1994) Homomers of α8 and α7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties.Mol. Pharmacol. 45, 212–220.

    PubMed  CAS  Google Scholar 

  21. Elgoyhen A. B., Johnson D. S., Boulter J., Vetter D. E., and Heinemann S. (1994) α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells.Cell 79, 705–715.

    PubMed  CAS  Google Scholar 

  22. Seguela P., Wadiche J., Dineley-Miller K., Dani J. A., and Patrick J. W. (1993) Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium.J. Neurosci. 13, 596–604.

    PubMed  CAS  Google Scholar 

  23. Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., et al. (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat.J. Comp. Neurol. 284, 314–335.

    PubMed  CAS  Google Scholar 

  24. Flores C. M., Rogers S. W., Pabreza L. A., Wolfe B. B., and Kellar K. J. (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is up-regulated by chronic nicotine treatment.Mol. Pharmacol. 41, 31–37.

    PubMed  CAS  Google Scholar 

  25. Alkondon M. and Albuquerque E. X. (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes.J. Pharmacol Exp Ther 265, 1455–1473.

    PubMed  CAS  Google Scholar 

  26. Zoli M., Lena C., Picciotto M. R., and Changeux J. P. (1998) Identification of four classes of brain nicotinic receptors using β2 mutant mice.J. Neurosci. 18, 4461–4472.

    PubMed  CAS  Google Scholar 

  27. Charpantier E., Barneoud P., Moser P., Besnard F., and Sgard F. (1998) Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area.Neuroreport 9, 3097–3101.

    PubMed  CAS  Google Scholar 

  28. Sorenson E. M., Shiroyama, T., and Kitai S. T. (1998) Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat.Neuroscience 87, 659–673.

    PubMed  CAS  Google Scholar 

  29. Stolerman I. P. and Shoaib M. (1991) The neurobiology of tobacco addiction.TiPS 12, 467–473.

    PubMed  CAS  Google Scholar 

  30. Dani J. A. and Heinemann S. (1996) Molecular and cellular aspects of nicotine abuse.Neuron 16, 905–908.

    PubMed  CAS  Google Scholar 

  31. Picciotto M. R., Zoli M., Rimondini R., Lena C., Marubio L. M., Pich E. M., et al. (1998) Acetyl-choline receptors containing the β2 subunit are involved in the reinforcing properties of nicotine.Nature 391, 173–177.

    PubMed  CAS  Google Scholar 

  32. Chen D. and Patrick J. W. (1997) The α-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the α7 subunit.J. Biol. Chem. 272, 24,024–24,029.

    CAS  Google Scholar 

  33. Orr-Urtreger A., Goldner F. M., Saeki M., Lorenzo, I., Goldberg L., De Biasi M., et al. (1997) Mice deficient in the α7 neuronal nicotinic acetylcholine receptor lack α-bungarotoxin binding sites and hippocampal fast nicotinic currents.J. Neurosci. 17, 9165–9171.

    PubMed  CAS  Google Scholar 

  34. Anand R., Peng X., and Lindstrom J. (1993) Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex.FEBS 327, 241–246.

    CAS  Google Scholar 

  35. Gotti C., Hanke W., Maury K., Moretti M., Ballivet M., Clementi F., and Bertrand D. (1994) Pharmacology and biophysical properties of the α7 and α7-α8 α-bungarotoxin receptor subtypes immunopurified from the chick optic lobe.Eur. J. Neurosci. 6, 1281–1291.

    PubMed  CAS  Google Scholar 

  36. Yu C. R. and Role L. W. (1998) Functional contribution of the α5 subunit to neuronal nicotinic channels expressed by chick sympathetic ganglion neurones.J. Physiol. (Lond.) 509, 667–681.

    CAS  Google Scholar 

  37. Zhang, Z.-W., Vijayaraghavan S., and Berg D. K. (1994) Neuronal acetylcholine receptors that bind α-bungarotoxin with high affinity function as ligand-gated ion channels.Neuron 12, 167–177.

    PubMed  CAS  Google Scholar 

  38. Vijayaraghavan S., Pugh P. C., Zhang Z. W., Rathouz M. M., and Berg D. K. (1992) Nicotinic receptors that bind α-bungarotoxin on neurons raise intracellular free Ca2+.Neuron 8, 353–362.

    PubMed  CAS  Google Scholar 

  39. Barrantes G. E., Murphy C. T., Westwick J., and Wonnacott S. (1995) Nicotine increases intracellular calcium in rat hippocampal neurons via voltage-gated calcium channels.Neurosci Lett. 196, 101–104.

    PubMed  CAS  Google Scholar 

  40. Castro N. G. and Albuquerque E. X. (1995) α-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability.Biophys. J. 68, 516–524.

    PubMed  CAS  Google Scholar 

  41. Gray T., Rajan A. S., Radcliffe K. A., Yakehiro Y., and Dani J. A. (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine.Nature 383, 713–716.

    PubMed  CAS  Google Scholar 

  42. McGehee D. S., Heath M. J., Gelber S., Devay P., and Role L. W. (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors.Science 269, 1692–1696.

    PubMed  CAS  Google Scholar 

  43. Guo J. Z., Tredway T. L., and Chiappinelli V. A. (1998) Glutamate and GABA release are enhanced by different subtypes of presynaptic nicotinic receptors in the lateral geniculate nucleus.J. Neurosci. 18, 1963–1969.

    PubMed  CAS  Google Scholar 

  44. Alkondon M., Rocha E. S., Maelicke A., and Albuquerque E. X. (1996) Diversity of nicotinic acetylcholine receptors in rat brain. V. α-Bungarotoxin-sensitive nicotinic receptors in olfactory bulb neurons and presynaptic modulation of glutamate release.J. Pharmacol. Exp. Ther. 278, 1460–1471.

    PubMed  CAS  Google Scholar 

  45. Aramakis V. B. and Metherate R. (1998) Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex.J. Neurosci. 18, 8485–8495.

    PubMed  CAS  Google Scholar 

  46. Pidoplichko V. I., DeBiasi M., Williams J. T., and Dani J. A. (1997) Nicotine activates and desensitizes midbrain dopamine neurons.Nature 390, 401–404.

    PubMed  CAS  Google Scholar 

  47. Zarei M. M., Radcliffe K. A., Chen D., Patrick J. W., and Dani J. A. (1999) Distribution of nicotinic acetylcholine receptor α7 and β2 subunits on cultured hippocampal neurons.Neurosci. 88, 755–764.

    CAS  Google Scholar 

  48. Schilstrom B., Svensson H. M., Svensson T. H., and Nomikos G. G. (1998) Nicotine and food induced dopamine release in the nucleus accumbens of the rat: putative role of α7 nicotinic receptors in the ventral tegmental area.Neuroscience 85, 1005–1009.

    PubMed  CAS  Google Scholar 

  49. Li X., Rainnie D. G., McCarley R. W., and Greene R. W. (1998) Presynaptic nicotinic receptors facilitate monoaminergic transmission.J. Neurosci. 18, 1904–1912.

    PubMed  CAS  Google Scholar 

  50. Liang S.-D. and Vizi E. S. (1997) Positive feedback modulation of acetylcholine release from isolated rat superior cervical ganglion.J. Pharma. Exp. Ther. 280, 650–655.

    CAS  Google Scholar 

  51. Radcliffe K. A., Fisher J. L., Gray R., and Dani J. A. (1999) Nicotinic modulation of glutamate and GABA synaptic transmission in hippocampal neurons.Ann. NY Acad. Sci. 868, 591–610.

    PubMed  CAS  Google Scholar 

  52. Alkondon M., Pereira E. F., Barbosa C. T., and Albuquerque E. X. (1997) Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices.J. Pharmacol. Exp. Ther. 283, 1396–1411.

    PubMed  CAS  Google Scholar 

  53. Alkondon M., Pereira E. F., and Albuquerque E. X. (1998) α-bungarotoxin-and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices.Brain Res. 810, 257–263.

    PubMed  CAS  Google Scholar 

  54. Frazier C. J., Buhler A. V., Weiner J. L., and Dunwiddie T. V. (1998) Synaptic potentials mediated via α-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons.J. Neurosci. 18, 8228–8235.

    PubMed  CAS  Google Scholar 

  55. Frazier C. J., Rollins Y. D., Breese C. R., Leonard S., Freedman R., and Dunwiddie T. V. (1998) Acetylcholine activates an α-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells.J. Neurosci. 18, 1187–1195.

    PubMed  CAS  Google Scholar 

  56. Corriveau R. A. and Berg D. K. (1993) Coexpression of multiple acetylcholine receptor genes in neurons: Quantification of transcripts during development.J. Neurosci. 13, 2662–2671.

    PubMed  CAS  Google Scholar 

  57. Jacob M. H. and Berg D. K. (1983) The ultrastructural localization of α-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons.J. Neurosci. 3, 260–271.

    PubMed  CAS  Google Scholar 

  58. Horch H. L. and Sargent P. B. (1995) Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion.J Neurosci 15, 7778–7795.

    PubMed  CAS  Google Scholar 

  59. Zhang Z. W., Coggan J. S., and Berg D. K. (1996) Synaptic currents generated by neuronal acetylcholine receptors sensitive to α-bungarotoxin.Neuron 17, 1231–1240.

    PubMed  CAS  Google Scholar 

  60. Ullian E. M., McIntosh J. M., and Sargent P. B. (1997) Rapid synaptic transmission in the avian ciliary ganglion is mediated by two distinct classes of nicotinic receptors.J. Neurosci. 17, 7210–7219.

    PubMed  CAS  Google Scholar 

  61. Chang K. T. and Berg D. K. (1999) Nicotinic acetylcholine receptors containing α7 subunits are required for reliable synaptic transmissionin situ.J. Neurosci. 19, 3701–3710.

    PubMed  CAS  Google Scholar 

  62. Alkondon M., Pereira E. F., Eisenberg H. M. and Albuquerque E. X. (1999) Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices.J. Neurosci. 19, 2693–2705.

    PubMed  CAS  Google Scholar 

  63. Hunter B. E., de Fiebre C. M., Papke R. L., Kem W. R., and Meyer E. M. (1994) A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus.Neurosci. Lett. 168, 130–134.

    PubMed  CAS  Google Scholar 

  64. Radcliffe K. A. and Dani J. A. (1998) Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission.J. Neurosci. 18, 7075–7083.

    PubMed  CAS  Google Scholar 

  65. Baskerville K. A., Schweitzer J. B., and Herron, P. (1997) Effects of cholinergic depletion on experience-dependent plasticity in the cortex of the rat.Neuroscience 80, 1159–1169.

    PubMed  CAS  Google Scholar 

  66. Kilgard M. P. and Merzenich M. M. (1998) Cortical map reorganization enabled by nucleus basalis activity.Science 279, 1714–1718.

    PubMed  CAS  Google Scholar 

  67. Sachdev R. N., Lu S. M., Wiley R. G., and Ebner F. F. (1998) Role of the basal forebrain cholinergic projection in somatosensory cortical plasticity.J. Neurophysiol. 79, 3216–3228.

    PubMed  CAS  Google Scholar 

  68. Zhu X. O. and Waite P. M. (1998) Cholinergic depletion reduces plasticity of barrel field cortex.Cereb. Cortex 8, 63–72.

    PubMed  CAS  Google Scholar 

  69. Wang G. K. and Schmidt J. (1976) Receptors for α-bungarotoxin in the developing visual system of the chick.Brain Res. 114, 524–529.

    PubMed  CAS  Google Scholar 

  70. Broide R. S., O'Connor L. T., Smith M. A., Smith J. A., and Leslie F. M. (1995) Developmental expression of α7 neuronal nicotinic receptor messenger RNA in rat sensory cortex and thalamus.Neuroscience 67, 83–94.

    PubMed  CAS  Google Scholar 

  71. Fuchs J. L. (1989) [125I]α-bungarotoxin binding marks primary sensory area developing rat neocortex.Brain Res. 501, 223–234.

    PubMed  CAS  Google Scholar 

  72. Fiedler E. P., Marks M. J., and Collins A. C. (1990) Postnatal development of two nicotinic cholinergic receptors in seven mouse brain regions.Int. J. Dev. Neurosci. 8, 533–540.

    PubMed  CAS  Google Scholar 

  73. Bina K. G., Guzman P., Broide R. S., Leslie F. M., Smith M. A., and O'Dowd, D. K. (1995) Localization of α7 nicotinic receptor subunit mRNA and α-bungarotoxin binding sites in developing mouse somatosensory thalamocortical system.J. Comp. Neurol. 363, 321–332.

    PubMed  CAS  Google Scholar 

  74. Broide R. S., Robertson R. T., and Leslie F. M. (1996) Regulation of α7 nicotinic acetylcholine receptors in the developing rat somatosensory cortex by thalamocortical afferents.J. Neurosci. 16, 2956–2971.

    PubMed  CAS  Google Scholar 

  75. Halvorsen S. W. and Berg D. K. (1989) Specific down-regulation of the α-bungarotoxin binding component on chick autonomic neurons by ciliary neuronotrophic factor.J. Neurosci. 9, 3673–3680.

    PubMed  CAS  Google Scholar 

  76. Geertsen S., Trifaro J. M., and Quik M. (1992) Phorbol esters and K+up-regulate α-bungarotoxin binding sites in cultured chromaffin cells through a related mechanism.Neurosci. Lett. 148, 207–210.

    PubMed  CAS  Google Scholar 

  77. De Koninck P. and Cooper E. (1995) Differential regulation of neuronal nicotinic ACh receptor subunit genes in cultured neonatal rat sympathetic neurons: specific induction of α7 by membrane depolarization through a Ca2+/calmodulin-dependent kinase pathway.J. Neurosci. 15, 7966–7978.

    PubMed  Google Scholar 

  78. Ospina J. A., Broide R. S., Acevedo D., Robertson R. T., and Leslie F. M. (1998) Calcium regulation of agonist binding to α7-type nicotinic acetylcholine receptors in adult and fetal rat hippocampus.J. Neurochem. 70, 1061–1068.

    PubMed  CAS  Google Scholar 

  79. Freeman J. A. (1977) Possible regulatory function of acetylcholine receptor in maintenance of retinotectal synapses.Nature 269, 218–222.

    PubMed  CAS  Google Scholar 

  80. Chan J. and Quik M. (1993) A role for the nicotinic α-bungarotoxin receptor in neurite out-growth in PC12 cells.Neuroscience 56, 441–451.

    PubMed  CAS  Google Scholar 

  81. Pugh P. C. and Berg D. K. (1994) Neuronal acetylcholine receptors that bind α-bungarotoxin mediate neurite retraction in a calcium-dependent manner.J. Neurosci. 14, 889–896.

    PubMed  CAS  Google Scholar 

  82. Coronas V., Durand M., Jourdan F., and Quirion R. (1998) Morphogenic effects of acetylcholine in rat olfactory bulb primary cultures.Soc. Neurosci. Abstr. 24, 1338.

    Google Scholar 

  83. Ghosh A. and Greenberg M. E. (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences.Science 268, 239–247.

    PubMed  CAS  Google Scholar 

  84. Vijayaraghavan S., Huang B., Blumenthal E. M., and Berg D. K. (1995) Arachidonic acid as a possible negative feedback inhibitor of nicotinic acetylcholine receptors on neurons.J. Neurosci. 15, 3679–3687.

    PubMed  CAS  Google Scholar 

  85. Freedman R., Wetmore C., Stromberg I., Leonard S., and Olson L. (1993) α-bungarotoxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression.J. Neurosci. 13, 1965–1975.

    PubMed  CAS  Google Scholar 

  86. Codignola A., Tarroni P., Cattaneo M. G., Vicentini L. M., Clementi F. and Sher E. (1994) Serotonin release and cell proliferation are under the control of alpha-bungarotoxin-sensitive nicotinic receptors in small-cell lung carcinoma cell lines.FEBS Lett. 342, 286–290.

    PubMed  CAS  Google Scholar 

  87. Quik M., Chan J., and Patrick J. (1994) α-Bungarotoxin blocks the nicotinic receptor mediated increase in cell number in a neuroendocrine cell line.Brain Res. 655, 161–167.

    PubMed  CAS  Google Scholar 

  88. Carlson N. G., Bacchi A., Rogers S. W., and Gahring L. C. (1998) Nicotine blocks TNFα mediated neuroprotection to NMDA by an α-bungarotoxin-sensitive pathway.J. Neurobiol. 35, 29–36.

    PubMed  CAS  Google Scholar 

  89. Shimohama S., Greenwald D. L., Shafron D. H., Akaika A., Maeda T., Kaneko S., et al. (1998) Nicotinic α7 receptors protect against glutamate neurotoxicity and neuronal ischemic damage.Brain Res 779, 359–363.

    PubMed  CAS  Google Scholar 

  90. Meyer E. M., King M. A., and Meyers C. (1998) Neuroprotective effects of 2,4-dimethoxybenzylidene anabaseine (DMXB) and tetrahydroaminoacridine (THA) in neocortices of nucleus basalis lesioned rats.Brain Res. 786, 252–254.

    PubMed  CAS  Google Scholar 

  91. Renshaw G., Rigby P., Self G., Lamb A., and Goldie R. (1993) Exogenously administered α-bungarotoxin binds to embryonic chick spinal cord: implications for the toxin-induced arrest of naturally occurring motoneuron death.Neuroscience 53, 1163–1172.

    PubMed  CAS  Google Scholar 

  92. Hory-Lee F. and Frank E. (1995) The nicotinic blocking agentsd-tubocurare and α-bungarotoxin save motoneurons from naturally occurring death in the absence of neuromuscular blockade.J. Neurosci. 15, 6453–6460.

    PubMed  CAS  Google Scholar 

  93. Berger F., Gage F. H., and Vijayaraghavan S. (1998) Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells.J. Neurosci. 18, 6871–6881.

    PubMed  CAS  Google Scholar 

  94. Revah F., Bertrand D., Galzi J. L., Devillers-Thiery A., Mulle C., Hussy N., et al. (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor.Nature 353, 846–849.

    PubMed  CAS  Google Scholar 

  95. Bertrand D., Devillers-Theiry A., Revah F., Galzi J. L., Hussy N., Mulle C., et al. (1992) Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain.Proc. Natl. Acad. Sci. USA 89, 1261–1265.

    PubMed  CAS  Google Scholar 

  96. Treinin M. and Chalfie M. (1995) A mutated acetylcholine receptor subunit causes neuronal degeneration inC. elegans.Neuron 14, 871–877.

    PubMed  CAS  Google Scholar 

  97. Broide R. S., Orr-Urtreger A., Dang H., Kasten M. R., Dani J. A., Beaudet A. L., et al. (1998) Mice homozygous for the α7 L247T nicotinic acetylcholine receptor mutation show increased neuronal apoptosis and die within 24 hours of birth.Soc. Neurosci. Abstr. 24, 834.

    Google Scholar 

  98. Orrenius S. and Nicotera P. (1994) The calcium ion and cell death.J. Neural. Transm. 43, 1–11.

    CAS  Google Scholar 

  99. Orr-Urtreger A., Noebels J. L., Goldner F. M., Patrick J., and Beaudet A. L. (1996) A novel hypersynchronous neocortical EEG phenotype in mice deficient in the neuronal nicotinic acetylcholine receptor (nAChRs) α7 subunit gene.Am. J. Hum. Genet. 59, A53.

    Google Scholar 

  100. Zoli M., Picciotto M. R., Ferrari R., Cocchi D., and Changeux J. P. (1999) Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors.EMBO J. 18, 1235–1244.

    PubMed  CAS  Google Scholar 

  101. Semba K. and Fibiger H. C. (1989) Organization of central cholinergic systems.Prog. Brain Res. 79, 37–63.

    PubMed  CAS  Google Scholar 

  102. Woolf N. J. (1991) Cholinergic systems in mammalian brain and spinal cord.Prog. Neurobiol. 37, 475–524.

    PubMed  CAS  Google Scholar 

  103. Dori I. and Parnavelas J. G. (1989) The cholinergic innervation of the rat cerebral cortex shows two distinct phases in development.Exp. Brain Res. 76, 417–423.

    PubMed  CAS  Google Scholar 

  104. Dinopoulos A., Eadie L. A., Dori I., and Parnavelas J. G. (1989) The development of basal forebrain projections to the rat visual cortex.Exp. Brain Res. 76, 563–571.

    PubMed  CAS  Google Scholar 

  105. Calarco C. A. and Robertson R. T. (1995) Development of basal forebrain projections to visual cortex: DiI studies in rat.J. Comp. Neurol. 354, 608–626.

    PubMed  CAS  Google Scholar 

  106. Kiss J. and Patel A. J. (1992) Development of the cholinergic fibres innervating the cerebral cortex of the rat.Int. J. Dev. Neurosci. 10, 153–170.

    PubMed  CAS  Google Scholar 

  107. Mechawar N. and Descarries L. (1998) Early postnatal development of the cholinergic innervation in the rat cerebral cortex.Soc. Neurosci. Abstr. 24, 1338.

    Google Scholar 

  108. Robertson R. T. (1987) A morphogenic role for transiently expressed acetylcholinesterase in developing thalamocortical systems.Neurosci. Lett. 75, 259–264.

    PubMed  CAS  Google Scholar 

  109. Papke R. L., Bencherif M., and Lippiello P. (1996) An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the α7 subtype.Neurosic. Lett. 213, 201–204.

    CAS  Google Scholar 

  110. Alkondon M., Pereira E. F., Cortes W. S., Maelicke A., and Albuquerque E. X. (1997) Choline is a selective agonist of α7 nicotinic acetylcholine receptors in the rat brain neurons.Eur. J. Neurosci. 9, 2734–2742.

    PubMed  CAS  Google Scholar 

  111. Meyer E. M., Tay E. T., Zoltewicz J. A., Meyers C., King M. A., Papke R. L. et al. (1998) Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties.J. Pharmacol. Exp. Ther. 284, 1026–1032.

    PubMed  CAS  Google Scholar 

  112. Albuquerque E. X., Pereira E. F. R., Castro N. G., and Alkondon M. (1995) Neuronal nicotinic receptors: function, modulation and structure.The Neurosciences 7, 91–101.

    CAS  Google Scholar 

  113. Alkondon M., Reinhardt S., Lobron C., Hermsen B., Maelicke A., and Albuquerque E. X. (1994) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. II. The rundown and inward rectification of agonist-elicited whole-cell currents and identification of receptor subunits by in situ hybridization.J. Pharmacol. Exp. Ther. 271, 494–506.

    PubMed  CAS  Google Scholar 

  114. Forster I. and Bertrand D. (1995) Inward rectification of neuronal nicotinic acetylcholine receptors investigated by using the homomeric α7 receptor.Proc. R. Soc. Lond. B. Biol. Sci. 260, 139–148.

    CAS  Google Scholar 

  115. Mayer M. L., Westbrook G. L., and Guthrie P. B. (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones.Nature 309, 261–263.

    PubMed  CAS  Google Scholar 

  116. Brocard J. B., Rajdev S., and Reynolds I. J. (1993) Glutamate-induced increases in intracellular free Mg2+ in cultured cortical neurons.Neuron 11, 751–757.

    PubMed  CAS  Google Scholar 

  117. Kharazia V. N. and Weinberg R. J. (1993) Glutamate in terminals of thlamocortical fibers in rat somatic sensory cortex.Neurosci. Letts. 157, 162–166.

    CAS  Google Scholar 

  118. Gil Z. and Amitai Y. (1996) Adult thalamocortical transmission involves both NMDA and non-NMDA receptors.J. Neurophys. 76, 2547–2554.

    CAS  Google Scholar 

  119. Hohmann C. F. and Ebner F. F. (1985) Development of cholinergic markers in mouse fore-brain. I. Choline acetyltransferase enzyme activity and acetylcholinesterase histochemistry.Dev. Brain Res. 23, 225–241.

    Google Scholar 

  120. Catalano S. M., Robertson R. T., and Killackey H. P. (1991) Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat.Proc. Natl. Acad. Sci. USA 88, 2999–3003.

    PubMed  CAS  Google Scholar 

  121. Miller B., Chou L., and Finlay B. L. (1993) The early development of thlamocortical and corticothalamic projections.J. Comp. Neurol. 335, 16–41.

    PubMed  CAS  Google Scholar 

  122. Schlaggar B. L., Fox K., and O'Leary D. D. M. (1993) Postsynaptic control of plasticity in developing somatosensory cortex.Nature 364, 623–626.

    PubMed  CAS  Google Scholar 

  123. Fox K., Schlagar B. L., Glazewski S., and O'Leary D. D. M. (1996) Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex.Proc. Natl. Acad. Sci. USA 93, 5584–5589.

    PubMed  CAS  Google Scholar 

  124. Agmon A. and O'Dowd D. K. (1992) NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition.J. Neurophys. 68, 345–349.

    CAS  Google Scholar 

  125. Blue M. E. and Johnston M. V. (1995) The ontogeny of glutamate receptors in rat barrel field cortex.Dev. Brain Res. 84, 11–25.

    CAS  Google Scholar 

  126. Jensen J. J., Winzer-Serhan U. H., and Leslie F. M. (1997) Glial regulation of α7-type nicotinic acetylcholine receptor expression in cultured rat cortical neurons.J. Neurochem. 68, 112–120.

    PubMed  CAS  Google Scholar 

  127. Kaneko S., Maeda T., Kume T., Kochiyama H., Akaike A., Shimohama S., et al. (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors.Brain Res. 765, 135–140.

    PubMed  CAS  Google Scholar 

  128. Minana M. D., Montoliu C., Llansola M., Grisolia S., and Felipo V. (1998) Nicotine prevents glutamate-induced proteolysis of the microtubule-associated protein MAP-2 and glutamate neurotoxicity in primary cultures of cerebellar neurons.Neuropharmacology 37, 847–857.

    PubMed  CAS  Google Scholar 

  129. Lena C. and Changeux J. P. (1997) Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders.Curr. Opinion Neurobiol. 7, 674–682.

    CAS  Google Scholar 

  130. Peng X., Katz M., Gerzanich V., Anand R., and Lindstrom J. (1994) Human α7 acetylcholine receptor: cloning of the α7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional α7 homomers expressed inXenopus oocytes.Mol. Pharmacol. 45, 546–554.

    PubMed  CAS  Google Scholar 

  131. Scheibmeir M. and O'Connell K. A. (1997) In harm's way: childbearing women and nicotine.J. Obstet. Gynecol. Neonatal Nurs. 26, 477–484.

    PubMed  CAS  Google Scholar 

  132. Navarro H. A., Seidler F. J., Eylers J. P., Baker F. E., Dobbins S. S., Lappi S. E., et al. (1989) Effects of prenatal nicotine exposure on development of central and peripheral cholinergic neurotransmitter systems. Evidence for cholinergic trophic influences in developing brain.J. Pharmacol. Exp. Ther. 251, 894–900.

    PubMed  CAS  Google Scholar 

  133. Navarro H. a., Seidler F. J., Schwartz R. D., Baker F. E., Dobbins S. S., and Slotkin T. A. (1989) Prenatal exposure to nicotine impairs nervous system development at a dose which does not affect viability or growth.Brain Res. Bull. 23, 187–192.

    PubMed  CAS  Google Scholar 

  134. Zahalka E. A., Seidler F. J., Lappi S. E., McCook E. C., Yanai J., and Slotkin T. A. (1992) Deficits in development of central cholinergic pathways caused by fetal nicotine exposure: differential effects on choline acetyltransferase activity and [3H]hemicholinium-3 binding.Neurotoxicol. Teratol. 14, 375–382.

    PubMed  CAS  Google Scholar 

  135. Levin E. D., Briggs S. J., Channelle Christopher N., and Rose, J. E. (1993) Prenatal nicotine exposure and cognitive performance in rats.Neurotoxicol. Teratol. 15, 251–260.

    PubMed  CAS  Google Scholar 

  136. Roy T. S. and Sabherwal U. (1994) Effects of prenatal nicotine exposure on the morphogenesis of somatosensory cortex.Neurotoxicol. Teratol. 16, 411–421.

    PubMed  CAS  Google Scholar 

  137. Braff D. L. and Geyer M. A. (1990) Sensorimotor gating and schizophrenia.Arch. Gen. Psychiatry 47, 181–188.

    PubMed  CAS  Google Scholar 

  138. Adler L. E., Hoffer L. D., Wiser A., and Freedman R. (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients.Am. J. Psychiatry 150, 1856–1861.

    PubMed  CAS  Google Scholar 

  139. Stevens K. E., Freedman R., Collins A. C., Hall M., Leonard S., Marks M. J., et al. (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and α-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains.Neuropsychopharmacology 15, 152–162.

    PubMed  CAS  Google Scholar 

  140. Adler L. E., Olincy A., Waldo M., Harris J. G., Griffith J., Stevens K., et al. (1998) Schizophrenia, sensory gating, and nicotinic receptors.Schizophr Bull. 24, 189–202.

    PubMed  CAS  Google Scholar 

  141. Freedman R., Coon H., Myles-Worsley M., Orr-Urtreger A., Olincy A., Davis A., et al. (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus.Proc. Natl. Acad. Sci. USA 94, 587–592.

    PubMed  CAS  Google Scholar 

  142. Paylor R., Nguyen M., Crawley J. N., Patrick J., Beaudet A., and Orr-Urtreger A. (1998) α7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of acra7-deficient mice.Learning & Memory 5, 302–316.

    CAS  Google Scholar 

  143. Jones E. G. (1997) Cortical development and thalamic pathology in schizophrenia.Schizophr. Bull. 23, 483–501.

    PubMed  CAS  Google Scholar 

  144. Woolf C. M. (1997) Does the genotype for schizophrenia often remain unexpressed because of canalization and stochastic events during development.Psychological Med. 27, 659–668.

    CAS  Google Scholar 

  145. Raedler T. J., Knable M. B., and Weinberger D. R. (1998) Schizophrenia as a developmental disorder of the cerebral cortex.Curr. Opinion Neurobiol. 8, 157–161.

    CAS  Google Scholar 

  146. Elmslie F. V., Rees M., Williamson M. P., Kerr M., Kjeldsen M. J., Pang K. A., et al. (1997) Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q.Hum. Mol. Genet. 6, 1329–1334.

    PubMed  CAS  Google Scholar 

  147. Neubauer B. A., Fielder B., Himmelein B., Kampfer F., Labker U., Schwabe G., et al. (1998) Centrotemporal spikes in families with rolandic epilepsy: Linkage to chromosome 15q14.Neurology 51, 1608–1612.

    PubMed  CAS  Google Scholar 

  148. Stitzel J. A., Farnham D. A., and Collins A. C. (1996) Linkage of strain-specific nicotinic receptor alpha 7 subunit restriction fragment length polymorphisms with levels of alpha-bungarotoxin binding in brain.Brain Res. Mol. Brain. Res. 43, 30–40.

    PubMed  CAS  Google Scholar 

  149. Stitzel J. A., Blanchette J. M., and Collins A. C. (1998) Sensitivity to the seizure-inducing effects of nicotine is associated with strain-specific variants of the alpha 5 and alpha 7 nicotinic receptor subunit genes.J. Pharmacol. Exp. Ther. 284, 1104–1111.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broide, R.S., Leslie, F.M. The α7 nicotinic acetylcholine receptor in neuronal plasticity. Mol Neurobiol 20, 1–16 (1999). https://doi.org/10.1007/BF02741361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741361

Index Entries

Navigation