Skip to main content

Advertisement

Log in

The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

The RBL-2H3 cell line is a commonly used histamine-releasing cell line used in inflammation, allergy and immunological research. Quite commonly, it is referred to in research papers as a mast cell line, despite the fact that it is derived from basophils. There is also a lack of consistency, both between different research groups using the same cell line and with both mast cell and basophil physiology. The review follows the development of the RBL-2H3 cell line from its inception and then goes on to assess the nature of the cell line in terms of its characteristics and its response to various stimuli. The relationship of this cell line to the various mast cell subtypes and basophils is discussed and it is concluded that while the RBL-2H3 cell line shares some characteristics with both mast cells and basophils, it is not fully representative of either.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Befus AD, Pearce FL, Gauldie J, Horsewood P, Bienenstock J. Mucosal mast cells. I. Isolation and functional characteristics of rat intestinal mast cells. J Immunol. 1982;128:2475–80.

    PubMed  CAS  Google Scholar 

  2. Maeyama K, Hohman RJ, Metzger H, Beaven MA. Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. Enhanced responses with heavy water. J Biol Chem. 1986;261:2583–92.

    PubMed  CAS  Google Scholar 

  3. Seldin DC, Adelman S, Austen KF, Stevens RL, Hein A, Caulfield JP, et al. Homology of the rat basophilic leukemia cell and the rat mucosal mast cell. Proc Natl Acad Sci USA. 1985;82:3871–5.

    Article  PubMed  CAS  Google Scholar 

  4. Tsujimura T, Furitsu T, Morimoto M, Kanayama Y, Nomura S, Matsuzawa Y, et al. Substitution of an aspartic acid results in constitutive activation of c-kit receptor tyrosine kinase in a rat tumor mast cell line RBL-2H3. Int Arch Allergy Immunol. 1995;106:377–85.

    Article  PubMed  CAS  Google Scholar 

  5. Gibbs BF, Amon U, Pearce FL. Spontaneous histamine release from mast cells and basophils is controlled by the cellular environment. Inflamm Res. 1997;46(Suppl 1):S25–6.

    Article  PubMed  CAS  Google Scholar 

  6. Boyce JA, Friend D, Matsumoto R, Austen KF, Owen WF. Differentiation in vitro of hybrid eosinophil/basophil granulocytes: autocrine function of an eosinophil developmental intermediate. J Exp Med. 1995;182:49–57.

    Article  PubMed  CAS  Google Scholar 

  7. Kirshenbaum AS, Goff JP, Semere T, Foster B, Scott LM, Metcalfe DD. Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+), and expresses aminopeptidase N (CD13). Blood. 1999;94:2333–42.

    PubMed  CAS  Google Scholar 

  8. Li L, Li Y, Reddel SW, Cherrian M, Friend DS, Stevens RL, et al. Identification of basophilic cells that express mast cell granule proteases in the peripheral blood of asthma, allergy, and drug-reactive patients. J Immunol. 1998;161:5079–86.

    PubMed  CAS  Google Scholar 

  9. Denburg JA. Basophil and mast cell lineages in vitro and in vivo. Blood. 1992;79:846–60.

    PubMed  CAS  Google Scholar 

  10. Church MK, Shute JK, Sampson AP. Mast-Cell derived mediators. In: Middleton’s Allergy: principles and practice. Philadelphia: Elsevier; 2003. p. 186–209.

  11. Falcone FH, Haas H, Gibbs BF. The human basophil: a new appreciation of its role in immune responses. Blood. 2000;96:4028–38.

    PubMed  CAS  Google Scholar 

  12. Abraham SN, Arock M. Mast cells and basophils in innate immunity. Semin Immunol. 1998;10:373–81.

    Article  PubMed  CAS  Google Scholar 

  13. Leonard BJ, Eccleston E, Jones D, Lowe J, Turner E. Basophilic leukemia in the rat induced by a-chlorethylamine–ICI 42464. J Pathol. 1971;103:Pxv.

    PubMed  CAS  Google Scholar 

  14. Eccleston E, Leonard BJ, Lowe JS, Welford HJ. Basophilic leukaemia in the albino rat and a demonstration of the basopoietin. Nat New Biol. 1973;244:73–6.

    PubMed  CAS  Google Scholar 

  15. Kulczycki A Jr, Isersky C, Metzger H. The interaction of IgE with rat basophilic leukemia cells. I. Evidence for specific binding of IgE. J Exp Med. 1974;139:600–16.

    Article  PubMed  CAS  Google Scholar 

  16. Kulczycki A Jr, Metzger H. The interaction of IgE with rat basophilic leukemia cells. II. Quantitative aspects of the binding reaction. J Exp Med. 1974;140:1676–95.

    Article  PubMed  Google Scholar 

  17. Siraganian RP, Kulczycki A Jr, Mendoza G, Metzger H. Ionophore A-23187 induced histamine release from rat mast cells and rat basophil leukemia (RBL-1) cells. J Immunol. 1975;115:1599–602.

    PubMed  CAS  Google Scholar 

  18. Barsumian EL, Isersky C, Petrino MG, Siraganian RP. IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones. Eur J Immunol. 1981;11:317–23.

    Article  PubMed  CAS  Google Scholar 

  19. Taurog JD, Mendoza GR, Hook WA, Siraganian RP, Metzger H. Noncytotoxic IgE-mediated release of histamine and serotonin from murine mastocytoma cells. J Immunol. 1977;119:1757–61.

    PubMed  CAS  Google Scholar 

  20. Siraganian RP, Metzger H. Evidence that the “mouse mastocytoma” cell line (MCT-1) is of rat origin. J Immunol. 1978;121:2584–5.

    PubMed  CAS  Google Scholar 

  21. Buell DN, Fowlkes BJ, Metzher H, Isersky C. Cell cycle and morphological changes during growth and differentiation of a rat basophilic leukemia cell line. Cancer Res. 1976;36:3131–7.

    PubMed  CAS  Google Scholar 

  22. Schroeder JT, Lichtenstein LM, Roche EM, Xiao H, Liu MC. IL-4 production by human basophils found in the lung following segmental allergen challenge. J Allergy Clin Immunol. 2001;107:265–71.

    Article  PubMed  CAS  Google Scholar 

  23. Galli SJ. Mast cells and basophils. Curr Opin Hematol. 2000;7:32–9.

    Article  PubMed  CAS  Google Scholar 

  24. Dvorak AM. Basophil and mast cell degranulation and recovery. In: Harris RJ, editor. Blood cell biochemistry, vol. 4. New York: Plenum Press; 1991.

    Google Scholar 

  25. Dvorak AM. Ultrastructure of mast cell and basophils: Karger; 2005.

  26. Sampson D, Archer GT. Release of histamine from human basophils. Blood. 1967;29:722–36.

    PubMed  CAS  Google Scholar 

  27. Pearce FL, Befus AD, Gauldie J, Bienenstock J. Mucosal mast cells. II. Effects of anti-allergic compounds on histamine secretion by isolated intestinal mast cells. J Immunol. 1982;128:2481–6.

    PubMed  CAS  Google Scholar 

  28. Gushchin IS, Zebrev AI. Ketotifen-induced histamine release, inhibition of histamine secretion and modulation of immune response. Agents Actions. 1986;18:92–5.

    Article  PubMed  CAS  Google Scholar 

  29. Fernandez M, Cordoba H, Santos F, Oehling A. In vitro ketotifen protection in bronchial hyperreactivity. J Investig Allergol Clin Immunol. 1991;1:377–82.

    PubMed  CAS  Google Scholar 

  30. Bochner BS, Schleimer RP. Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev. 2001;179:5–15.

    Article  PubMed  CAS  Google Scholar 

  31. Arinobu Y, Iwasaki H, Gurish MF, Mizuno S, Shigematsu H, Ozawa H, et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA. 2005;102:18105–10.

    Article  PubMed  CAS  Google Scholar 

  32. Supajatura V, Ushio H, Nakao A, Okumura K, Ra C, Ogawa H. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J Immunol. 2001;167:2250–6.

    PubMed  CAS  Google Scholar 

  33. Bieneman AP, Chichester KL, Chen YH, Schroeder JT. Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion. J Allergy Clin Immunol. 2005;115:295–301.

    Article  PubMed  CAS  Google Scholar 

  34. Komiya A, Nagase H, Okugawa S, Ota Y, Suzukawa M, Kawakami A, et al. Expression and function of toll-like receptors in human basophils. Int Arch Allergy Immunol. 2006;140(Suppl 1):23–7.

    Article  PubMed  CAS  Google Scholar 

  35. Robertson D, Holowka D, Baird B. Cross-linking of immunoglobulin E-receptor complexes induces their interaction with the cytoskeleton of rat basophilic leukemia cells. J Immunol. 1986;136:4565–72.

    PubMed  CAS  Google Scholar 

  36. Fewtrell C, Metzger H. Larger oligomers of IgE are more effective than dimers in stimulating rat basophilic leukemia cells. J Immunol. 1980;125:701–10.

    PubMed  CAS  Google Scholar 

  37. Ikawati Z, Wahyuono S, Maeyama K. Screening of several Indonesian medicinal plants for their inhibitory effect on histamine release from RBL-2H3 cells. J Ethnopharmacol. 2001;75:249–56.

    Article  PubMed  CAS  Google Scholar 

  38. Kanda T, Akiyama H, Yanagida A, Tanabe M, Goda Y, Toyoda M, et al. Inhibitory effects of apple polyphenol on induced histamine release from RBL-2H3 cells and rat mast cells. Biosci Biotechnol Biochem. 1998;62:1284–9.

    Article  PubMed  CAS  Google Scholar 

  39. Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol. 2006;6:218–30.

    Article  PubMed  CAS  Google Scholar 

  40. Kepley CL, Wilson BS, Oliver JM. Identification of the Fc epsilonRI-activated tyrosine kinases Lyn, Syk, and Zap-70 in human basophils. J Allergy Clin Immunol. 1998;102:304–15.

    Article  PubMed  CAS  Google Scholar 

  41. Tomita U, Inanobe A, Kobayashi I, Takahashi K, Ui M, Katada T. Direct interactions of mastoparan and compound 48/80 with GTP-binding proteins. J Biochem. 1991;109:184–9.

    PubMed  CAS  Google Scholar 

  42. Tanaka T, Kohno T, Kinoshita S, Mukai H, Itoh H, Ohya M, et al. Alpha helix content of G protein alpha subunit is decreased upon activation by receptor mimetics. J Biol Chem. 1998;273:3247–52.

    Article  PubMed  CAS  Google Scholar 

  43. Mousli M, Bueb JL, Bronner C, Rouot B, Landry Y. G protein activation: a receptor-independent mode of action for cationic amphiphilic neuropeptides and venom peptides. Trends Pharmacol Sci. 1990;11:358–62.

    Article  PubMed  CAS  Google Scholar 

  44. Aridor M, Rajmilevich G, Beaven MA, Sagi-Eisenberg R. Activation of exocytosis by the heterotrimeric G protein Gi3. Science. 1993;262:1569–72.

    Article  PubMed  CAS  Google Scholar 

  45. Chahdi A, Fraundorfer PF, Beaven MA. Compound 48/80 activates mast cell phospholipase D via heterotrimeric GTP-binding proteins. J Pharmacol Exp Ther. 2000;292:122–30.

    PubMed  CAS  Google Scholar 

  46. Senyshyn J, Baumgartner RA, Beaven MA. Quercetin sensitizes RBL-2H3 cells to polybasic mast cell secretagogues through increased expression of Gi GTP-binding proteins linked to a phospholipase C signaling pathway. J Immunol. 1998;160:5136–44.

    PubMed  CAS  Google Scholar 

  47. Buku A, Price JA, Mendlowitz M, Masur S. Mast cell degranulating peptide binds to RBL-2H3 mast cell receptors and inhibits IgE binding. Peptides. 2001;22:1993–8.

    Article  PubMed  CAS  Google Scholar 

  48. Buku A. Mast cell degranulating (MCD) peptide: a prototypic peptide in allergy and inflammation. Peptides. 1999;20:415–20.

    Article  PubMed  CAS  Google Scholar 

  49. Passante E, Ehrhardt C, Sheridan H, Frankish N. RBL-2H3 cells are an imprecise model for mast cell mediator release. Inflamm Res. 2009;58(9):611–8.

    Article  PubMed  CAS  Google Scholar 

  50. Dedkova EN, Sigova AA, Zinchenko VP. Mechanism of action of calcium ionophores on intact cells: ionophore-resistant cells. Membr Cell Biol. 2000;13:357–68.

    PubMed  CAS  Google Scholar 

  51. Ludowyke RI, Scurr LL, McNally CM. Calcium ionophore-induced secretion from mast cells correlates with myosin light chain phosphorylation by protein kinase C. J Immunol. 1996;157:5130–8.

    PubMed  CAS  Google Scholar 

  52. Johnson HG, Bach MK. Prevention of calcium ionophore-induced release of histamine in rat mast cells by disodium cromoglycate. J Immunol. 1975;114:514–6.

    PubMed  CAS  Google Scholar 

  53. Passante E, Ehrhardt C, Sheridan H, Frankish N. Toll-like receptors and RBL-2H3 mast cells. Inflamm Res. 2009;58(Suppl 1):11–2.

    Article  PubMed  CAS  Google Scholar 

  54. Hasala H, Giembycz MA, Janka-Junttila M, Moilanen E, Kankaanranta H. Histamine reverses IL-5-afforded human eosinophil survival by inducing apoptosis: pharmacological evidence for a novel mechanism of action of histamine. Pulm Pharmacol Ther. 2008;21:222–33.

    Article  PubMed  CAS  Google Scholar 

  55. Schmidt J, Fleissner S, Heimann-Weitschat I, Lindstaedt R, Szelenyi I. Histamine increases anti-CD3 induced IL-5 production of TH2-type T cells via histamine H2-receptors. Agents Actions. 1994;42:81–5.

    Article  PubMed  CAS  Google Scholar 

  56. Nakatani K, Atsumi M, Arakawa T, Oosawa K, Shimura S, Nakahata N, et al. Inhibitions of histamine release and prostaglandin E2 synthesis by mangosteen, a Thai medicinal plant. Biol Pharm Bull. 2002;25:1137–41.

    Article  PubMed  CAS  Google Scholar 

  57. Kobayashi M, Matsushita H, Yoshida K, Tsukiyama R, Sugimura T, Yamamoto K. In vitro and in vivo anti-allergic activity of soy sauce. Int J Mol Med. 2004;14:879–84.

    PubMed  CAS  Google Scholar 

  58. Enerback L, Wingren U. Histamine content of peritoneal and tissue mast cells of growing rats. Histochemistry. 1980;66:113–24.

    Article  PubMed  CAS  Google Scholar 

  59. Church MK, Shute JK, Sampson AP. Mass cell-derived mediators. In: Adkinson (ed) Middleton’s allergy: principles and practice: Elsevier, Health Sciences Division; 2003.

  60. Harville BA, Dreyfus LA. Release of serotonin from RBL-2H3 cells by the Escherichia coli peptide toxin STb. Peptides. 1996;17:363–6.

    Article  PubMed  CAS  Google Scholar 

  61. Theoharides TC, Bondy PK, Tsakalos ND, Askenase PW. Differential release of serotonin and histamine from mast cells. Nature. 1982;297:229–31.

    Article  PubMed  CAS  Google Scholar 

  62. Theoharides TC, Kops SK, Bondy PK, Askenase PW. Differential release of serotonin without comparable histamine under diverse conditions in the rat mast cell. Biochem Pharmacol. 1985;34:1389–98.

    Article  PubMed  CAS  Google Scholar 

  63. Tamir H, Theoharides TC, Gershon MD, Askenase PW. Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of [3H]serotonin. J Cell Biol. 1982;93:638–47.

    Article  PubMed  CAS  Google Scholar 

  64. Purcell WM, Hanahoe TH. Differential release of histamine and 5-hydroxytryptamine from rat mast cells: the contribution of amine uptake to the apparent pattern of secretion. Agents Actions. 1990;30:38–40.

    Article  PubMed  CAS  Google Scholar 

  65. Williams RM, Shear JB, Zipfel WR, Maiti S, Webb WW. Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence. Biophys J. 1999;76:1835–46.

    Article  PubMed  CAS  Google Scholar 

  66. Seagrave J, Oliver JM. Antigen-dependent transition of IgE to a detergent-insoluble form is associated with reduced IgE receptor-dependent secretion from RBL-2H3 mast cells. J Cell Physiol. 1990;144:128–36.

    Article  PubMed  CAS  Google Scholar 

  67. Dearman RJ, Skinner RA, Deakin N, Shaw D, Kimber I. Evaluation of an in vitro method for the measurement of specific IgE antibody responses: the rat basophilic leukemia (RBL) cell assay. Toxicology. 2005;206:195–205.

    Article  PubMed  CAS  Google Scholar 

  68. Coleman JW. A kinetic analysis of the in vitro sensitization of murine peritoneal mast cells with monoclonal IgE anti-DNP antibody. Immunology. 1988;64:527–31.

    PubMed  CAS  Google Scholar 

  69. Irman-Florjanc T, Erjavec F. Compound 48/80 and substance P induced release of histamine and serotonin from rat peritoneal mast cells. Agents Actions. 1983;13:138–41.

    Article  PubMed  CAS  Google Scholar 

  70. Gibbs BF. Human basophils as effectors and immunomodulators of allergic inflammation and innate immunity. Clin Exp Med. 2005;5:43–9.

    Article  PubMed  CAS  Google Scholar 

  71. Mazurek N, Bashkin P, Petrank A, Pecht I. Basophil variants with impaired cromoglycate binding do not respond to an immunological degranulation stimulus. Nature. 1983;303:528–30.

    Article  PubMed  CAS  Google Scholar 

  72. Mazurek N, Bashkin P, Loyter A, Pecht I. Restoration of Ca2+ influx and degranulation capacity of variant RBL-2H3 cells upon implantation of isolated cromolyn binding protein. Proc Natl Acad Sci USA. 1983;80:6014–8.

    Article  PubMed  CAS  Google Scholar 

  73. Park EK, Choo MK, Kim EJ, Han MJ, Kim DH. Antiallergic activity of ginsenoside Rh2. Biol Pharm Bull. 2003;26:1581–4.

    Article  PubMed  CAS  Google Scholar 

  74. Bissonnette EY, Enciso JA, Befus AD. Inhibition of tumour necrosis factor-alpha (TNF-alpha) release from mast cells by the anti-inflammatory drugs, sodium cromoglycate and nedocromil sodium. Clin Exp Immunol. 1995;102:78–84.

    Article  PubMed  CAS  Google Scholar 

  75. Pearce FL, Befus AD, Bienenstock J. Mucosal mast cells. III. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells. J Allergy Clin Immunol. 1984;73:819–23.

    Article  PubMed  CAS  Google Scholar 

  76. Middleton E Jr, Drzewiecki G, Krishnarao D. Quercetin: an inhibitor of antigen-induced human basophil histamine release. J Immunol. 1981;127:546–50.

    PubMed  CAS  Google Scholar 

  77. Middleton E Jr, Kandaswami C. Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol. 1992;43:1167–79.

    Article  PubMed  CAS  Google Scholar 

  78. Gushchin IS, Zebrev AI. Characteristics of the effect of ketotifen on the selective and non-selective histamine release from human basophils. Biull Eksp Biol Med. 1984;97:60–3.

    PubMed  CAS  Google Scholar 

  79. Marshall JS. Mast-cell responses to pathogens. Nat Rev Immunol. 2004;4:787–99.

    Article  PubMed  CAS  Google Scholar 

  80. Passante E, Ehrhardt C, Sheridan H, Frankish N. In vitro inhibition of rat basophilic leukaemia mast cell (RBL-2H3) degranulation by novel indane compounds. Inflamm Res. 2008;57(Suppl 1):15–6.

    Article  CAS  Google Scholar 

  81. Gon Y, Nunomura S, Ra C. Common and distinct signalling cascades in the production of tumour necrosis factor-alpha and interleukin-13 induced by lipopolysaccharide in RBL-2H3 cells. Clin Exp Allergy. 2005;35:635–42.

    Article  PubMed  CAS  Google Scholar 

  82. Froese A, Helm RM, Conrad DH, Isersky C, Ishizaka T, Kulczycki A Jr. Comparison of the receptors for IgE of various rat basophilic leukaemia cell lines. I. Receptors isolated by IgE-sepharose and IgE and anti-IgE. Immunology. 1982;46:107–16.

    PubMed  CAS  Google Scholar 

  83. Froese A, Helm RM, Conrad DH, Isersky C, Ishizaka T. Comparison of the receptors for IgE of various rat basophilic leukaemia cell lines. II. Studies with different anti-receptor antisera. Immunology. 1982;46:117–23.

    PubMed  CAS  Google Scholar 

  84. Magro AM, Alexander A. Histamine release: in vitro studies of the inhibitory region of the dose-response curve. J Immunol. 1974;112:1762–5.

    PubMed  CAS  Google Scholar 

  85. Ortega E, Schweitzer-Stenner R, Pecht I. Possible orientational constraints determine secretory signals induced by aggregation of IgE receptors on mast cells. Embo J. 1988;7:4101–9.

    PubMed  CAS  Google Scholar 

  86. Nakano T, Sonoda T, Hayashi C, Yamatodani A, Kanayama Y, Yamamura T, et al. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J Exp Med. 1985;162:1025–43.

    Article  PubMed  CAS  Google Scholar 

  87. Kanakura Y, Thompson H, Nakano T, Yamamura T, Asai H, Kitamura Y, et al. Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells. Blood. 1988;72:877–85.

    PubMed  CAS  Google Scholar 

  88. Taketomi Y, Sugiki T, Saito T, Ishii S, Hisada M, Suzuki-Nishimura T, et al. Identification of NDRG1 as an early inducible gene during in vitro maturation of cultured mast cells. Biochem Biophys Res Commun. 2003;306:339–46.

    Article  PubMed  CAS  Google Scholar 

  89. Swieter M, Midura RJ, Nishikata H, Oliver C, Berenstein EH, Mergenhagen SE, et al. Mouse 3T3 fibroblasts induce rat basophilic leukemia (RBL-2H3) cells to acquire responsiveness to compound 48/80. J Immunol. 1993;150:617–24.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Frankish.

Additional information

Responsible Editor: A. Falus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passante, E., Frankish, N. The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell. Inflamm. Res. 58, 737–745 (2009). https://doi.org/10.1007/s00011-009-0074-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0074-y

Keywords

Navigation