Skip to main content

Advertisement

Log in

Differential use of an in-frame translation initiation codon regulates human mu opioid receptor (OPRM1)

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The pharmacological effects of morphine and morphine-like drugs are mediated primarily through the µ opioid receptor. Here we show that differential use of an in-frame translational start codon in the 5′-untranslated region of the OPRM1 generates different translational products in vivo and in vitro. The 5′-end of the OPRM1 gene is necessary for initiating the alternate form and for subsequent degradation of the protein. Initiation of OPRM1 at the upstream site decreases the initiation at the main AUG site. However, alternative initiation of the long form of OPRM1 produces a protein with a short half-life, resulting from degradation mediated by the ubiquitin–proteasome pathway. Reporter and degradation assays showed that mutations of this long form at the second and third lysines reduce ubiquitin-dependent proteasome degradation, stabilizing the protein. The data suggest that MOP expression is controlled in part by initiation of the long form of MOP at the alternate site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaturvedi K, Christoffers KH, Singh K, Howells RD (2001) Structure and regulation of opioid receptors. Biopolymers 55:334–346

    Article  CAS  Google Scholar 

  2. Min BH, Augustin LB, Felsheim RF, Fuchs JA, Loh HH (1994) Genomic structure analysis of promoter sequence of a mouse μ opioid receptor gene. Proc Natl Acad Sci USA 91:9081–9085

    Article  PubMed  CAS  Google Scholar 

  3. Kieffer B (1995) Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell Mol Neurobiol 15:615–635

    Article  PubMed  CAS  Google Scholar 

  4. Kieffer B (1999) Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20:19–26

    Article  PubMed  CAS  Google Scholar 

  5. Kim CS, Hwang CK, Choi HS, Song KY, Law PY, Wei LN, Loh HH (2004) Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the mu opioid receptor gene. J Biol Chem 279:46464–46473

    Article  PubMed  CAS  Google Scholar 

  6. Choi HS, Hwang CK, Kim CS, Song KY, Law PY, Wei LN, Loh HH (2005) Transcriptional regulation of mouse mu opioid receptor gene: Sp3 isoforms (M1, M2) function as repressors in neuronal cells to regulate the mu opioid receptor gene. Mol Pharmacol 67:1674–1683

    Article  PubMed  CAS  Google Scholar 

  7. Choi HS, Kim CS, Hwang CK, Song KY, Wang W, Qiu Y, Law PY, Wei LN, Loh HH (2006) The opioid ligand binding of human mu-opioid receptor is modulated by novel splice variants of the receptor. Biochem Biophys Res Commun 343:1132–1140

    Article  PubMed  CAS  Google Scholar 

  8. Kim CS, Choi HS, Hwang CK, Song KY, Lee BK, Law PY, Wei LN, Loh HH (2006) Evidence of the neuron-restrictive silencer factor (NRSF) interaction with Sp3 and its synergic repression to the mu opioid receptor (MOR) gene. Nucleic Acids Res 34:6392–6403

    Article  PubMed  CAS  Google Scholar 

  9. Hwang CK, Song KY, Kim CS, Choi HS, Guo XH, Law PY, Wei LN, Loh HH (2007) Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol 27:4720–4736

    Article  PubMed  CAS  Google Scholar 

  10. Choi HS, Kim CS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH (2007) Novel function of the poly(C)-binding protein alpha CP3 as a transcriptional repressor of the mu opioid receptor gene. FASEB J 21:3963–3973

    Article  PubMed  CAS  Google Scholar 

  11. Choi HS, Hwang CK, Kim CS, Song KY, Law PY, Loh HH, Wei LN (2008) Transcriptional regulation of mouse mu opioid receptor gene in neuronal cells by poly(ADP-ribose) polymerase-1. J Cell Mol Med 12:2319–2333

    Article  PubMed  CAS  Google Scholar 

  12. Choi HS, Song KY, Hwang CK, Kim CS, Law PY, Wei LN, Loh HH (2008) A proteomics approach for identification of single strand DNA-binding proteins involved in transcriptional regulation of mouse mu opioid receptor gene. Mol Cell Proteomics 7:1517–1529

    Article  PubMed  CAS  Google Scholar 

  13. Wei LN, Law PY, Loh HH (2004) Post-transcriptional regulation of opioid receptors in the nervous system. Front Biosci 9:1665–1679

    Article  PubMed  CAS  Google Scholar 

  14. Song KY, Hwang CK, Kim CS, Choi HS, Law PY, Wei LN, Loh HH (2007) Translational repression of mouse mu opioid receptor expression via leaky scanning. Nucleic Acids Res 35:1501–1513

    Article  PubMed  CAS  Google Scholar 

  15. Song KY, Kim CS, Hwang CK, Choi HS, Law PY, Wei LN, Loh HH (2009) uAUG-mediated translational initiations are responsible for human mu opioid receptor gene expression. J Cell Mol Med (in press)

  16. Uhlmann-Schiffler H, Rössler OG, Stahl H (2002) The mRNA of DEAD box protein p72 is alternatively translated into an 82-kDa RNA helicase. J Biol Chem 277:1066–1075

    Article  PubMed  CAS  Google Scholar 

  17. Aviel S, Winberg G, Massucci M, Ciechanover A (2000) Degradation of the Epstein–Barr virus latent membrane protein 1 (LMP1) by the ubiquitin–proteasome pathway. Targeting via ubiquitination of the N-terminal residue. J Biol Chem 275:23491–23499

    Article  PubMed  CAS  Google Scholar 

  18. Reinstein E, Scheffner M, Oren M, Ciechanover A, Schwartz A (2000) Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin–proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene 19:5944–5950

    Article  PubMed  CAS  Google Scholar 

  19. Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  20. Laney JD, Hochstrasser M (1999) Substrate targeting in the ubiquitin system. Cell 97:427–430

    Article  PubMed  CAS  Google Scholar 

  21. Ciechanover A, Schwartz AL (1998) The ubiquitin–proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci USA 95:2727–2730

    Article  PubMed  CAS  Google Scholar 

  22. Kornilova E, Sorkina T, Beguinot L, Sorkin A (1996) Lysosomal targeting of epidermal growth factor receptors via a kinase-dependent pathway is mediated by the receptor carboxyl-terminal residues 1022–1123. J Biol Chem 271:30340–30346

    Article  PubMed  CAS  Google Scholar 

  23. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  PubMed  CAS  Google Scholar 

  24. Madura K, Varshavsky A (1994) Degradation of G alpha by the N-end rule pathway. Science 265:1454–1458

    Article  PubMed  CAS  Google Scholar 

  25. Chaturvedi K, Bandari P, Chinen N, Howells RD (2001) Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors. J Biol Chem 276:12345–12355

    Article  PubMed  CAS  Google Scholar 

  26. Kochetov AV (2008) Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 30:683–691

    Article  PubMed  CAS  Google Scholar 

  27. Crowe ML, Wang XQ, Rothnagel JA (2006) Evidence for conservation and selection of upstream open reading frames suggests probable encoding of bioactive peptides. BMC Genomics 7:16

    Article  PubMed  Google Scholar 

  28. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Batürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  PubMed  CAS  Google Scholar 

  29. Ivanov IP, Loughran G, Atkins JF (2008) uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proc Natl Acad Sci USA 105:10079–10084

    Article  PubMed  CAS  Google Scholar 

  30. Kochetov AV, Ahmad S, Ivanisenko V, Volkova OA, Kolchanov NA, Sarai A (2008) uORFs, reinitiation and alternative translation start sites in human mRNAs. FEBS Lett 582:1293–1297

    Article  PubMed  CAS  Google Scholar 

  31. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  32. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172

    Article  PubMed  CAS  Google Scholar 

  33. Ciechanover A (2006) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Exp Biol Med (Maywood) 231:1197–1211

    Google Scholar 

  34. Vembar S, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 12:944–957

    Article  Google Scholar 

  35. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    Article  PubMed  CAS  Google Scholar 

  36. Anelli T, Sitia R (2008) Protein quality control in the early secretory pathway. EMBO J 27:315–327

    Article  PubMed  CAS  Google Scholar 

  37. Leskelä T, Markkanen PM, Alahuhta IA, Tuusa JT, Petäjä-Repo UE (2009) Phe27Cys polymorphism alters the maturation and subcellular localization of the human delta opioid receptor. Traffic 10:116–129

    Article  PubMed  Google Scholar 

  38. Schwieger I, Lautz K, Krause E, Rosenthal W, Wiesner B, Hermosilla R (2008) Derlin-1 and p97/valosin-containing protein mediate the endoplasmic reticulum-associated degradation of human V2 vasopressin receptors. Mol Pharmacol 73:697–708

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health research grants DA000564, DA001583, DA011806, K05-DA070554, DA011190, and DA013926, and by the A&F Stark Fund of the Minnesota Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Young Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, K.Y., Choi, H.S., Hwang, C.K. et al. Differential use of an in-frame translation initiation codon regulates human mu opioid receptor (OPRM1). Cell. Mol. Life Sci. 66, 2933–2942 (2009). https://doi.org/10.1007/s00018-009-0082-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0082-7

Keywords

Navigation