Skip to main content
Log in

The insecticidal potential of venom peptides

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey–predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

BKCa :

Maxi-K calcium-activated potassium channel

CaV :

Voltage-gated calcium channel

CSα/β:

Cystine-stabilized α/β

DDH:

Disulfide-directed β-hairpin

DmNaV :

Drosophila voltage-gated sodium channel

GABA:

γ-aminobutyric acid

HVA:

High-voltage activated

HXTX:

Hexatoxin

ICK:

Inhibitor cystine knot

KV :

Voltage-gated potassium channel

MATP:

Myoactive tetradecapeptide

NaV :

Voltage-gated sodium channel

LVA:

Low-voltage activated

MVA:

Mid-voltage activated

nAChR:

Nicotinic acetylcholine receptor

NMDA:

N-methyl-d-aspartic acid

RyR:

Ryanodine receptor

TRTX:

Theraphotoxin

tLVA:

Transient low-voltage activated

TTX-R:

Tetrodotoxin-resistant

TTX-S:

Tetrodotoxin-sensitive

References

  1. Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  2. Pimental D (2009) Pesticides and pest control. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht, pp 83–87

    Chapter  Google Scholar 

  3. Tedford HW, Sollod BL, Maggio F, King GF (2004) Australian funnel-web spiders: master insecticide chemists. Toxicon 43(5):601–618

    Article  PubMed  CAS  Google Scholar 

  4. Windley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GF, Nicholson GM (2012) Spider-venom peptides as bioinsecticides. Toxins 4(3):191–227

    Article  PubMed  CAS  Google Scholar 

  5. Lai TC, Su JY (2011) Assessment of resistance risk in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Manag Sci 67(11):1468–1472

    Article  PubMed  CAS  Google Scholar 

  6. Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67(8):886–890

    Article  PubMed  CAS  Google Scholar 

  7. Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23(1):57–62

    Article  PubMed  CAS  Google Scholar 

  8. Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future? Annu Rev Entomol 43:1–16

    Article  PubMed  CAS  Google Scholar 

  9. Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C (2012) Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol Lett 210(2):155–168

    Article  PubMed  CAS  Google Scholar 

  10. Zaim M, Guillet P (2002) Alternative insecticides: an urgent need. Trends Parasitol 18(4):161–163

    Article  PubMed  Google Scholar 

  11. Gurevitz M, Karbat I, Cohen L, Ilan N, Kahn R, Turkov M, Stankiewicz M, Stuhmer W, Dong K, Gordon D (2007) The insecticidal potential of scorpion β-toxins. Toxicon 49(4):473–489

    Article  PubMed  CAS  Google Scholar 

  12. Maggio F, Sollod BL, Tedford HW, Herzig, V., King GF (2010) Spider toxins and their potential for insect control. In: Gilbert LI, Gill SS (eds) Insect pharmacology: channels, receptors, toxins and enzymes. Academic Press, London, pp 101–123

    Google Scholar 

  13. Undheim EA, King GF (2011) On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon 57(4):512–524

    Article  PubMed  CAS  Google Scholar 

  14. Yang DM, Hu KP, Li CY, Wu CH, Zhou PA (2000) Neural electrophysiological effect of crude venom of Conus textile from the South China Sea. Toxicon 38(11):1607–1612

    Article  PubMed  CAS  Google Scholar 

  15. Orivel J, Redeker V, Le Caer JP, Krier F, Revol-Junelles AM, Longeon A, Chaffotte A, Dejean A, Rossier J (2001) Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem 276(21):17823–17829

    Article  PubMed  CAS  Google Scholar 

  16. Quistad GB, Nguyen Q, Bernasconi P, Leisy DJ (1994) Purification and characterization of insecticidal toxins from venom glands of the parasitic wasp Bracon hebetor. Insect Biochem Mol Biol 24(10):955–961

    Article  PubMed  CAS  Google Scholar 

  17. Bosmans F, Tytgat J (2007) Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels. Toxicon 49(4):550–560

    Article  PubMed  CAS  Google Scholar 

  18. Yu HH, Liu XG, Dong XL, Li CP, Xing RE, Liu S, Li PC (2005) Insecticidal activity of proteinous venom from tentacle of jellyfish Rhopilema esculentum Kishinouye. Bioorg Med Chem Lett 15(22):4949–4952

    Article  PubMed  CAS  Google Scholar 

  19. Primor N, Teitelbaum Z, Zlotkin E (1980) Penetrability of orally toxic protein from cobra venom through the gut of a blowfly. Biochim Biophys Acta 627(1):71–81

    Article  PubMed  CAS  Google Scholar 

  20. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511

    Article  PubMed  CAS  Google Scholar 

  21. Windley MJ, Escoubas P, Valenzuela SM, Nicholson GM (2011) A novel family of insect-selective peptide neurotoxins targeting insect large-conductance calcium-activated K+ channels isolated from the venom of the theraphosid spider Eucratoscelus constrictus. Mol Pharmacol 80(1):1–13

    Article  PubMed  CAS  Google Scholar 

  22. Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS (1994) A common structural motif incorporating a cystine knot and a triple-stranded β-sheet in toxic and inhibitory polypeptides. Protein Sci 31:833–1839

    Google Scholar 

  23. Saez NJ, Senff S, Jensen JE, Er SY, Herzig V, Rash LD, King GF (2010) Spider-venom peptides as therapeutics. Toxins 2:2851–2871

    Article  PubMed  CAS  Google Scholar 

  24. King GF, Hardy MC (2013) Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol 58:475–496

    Article  PubMed  CAS  Google Scholar 

  25. Craik DJ, Daly NL, Waine C (2001) The cystine knot motif in toxins and implications for drug design. Toxicon 39(1):43–60

    Article  PubMed  CAS  Google Scholar 

  26. King GF, Tedford HW, Maggio F (2002) Structure and function of insecticidal neurotoxins from Australian funnel-web spiders. J Toxicol-Toxin Rev 21(4):359–389

    CAS  Google Scholar 

  27. Sollod BL, Wilson D, Zhaxybayeva O, Gogarten JP, Drinkwater R, King GF (2005) Were arachnids the first to use combinatorial peptide libraries? Peptides 26:131–139

    Article  PubMed  CAS  Google Scholar 

  28. Herzig V, Wood DL, Newell F, Chaumeil PA, Kaas Q, Binford GJ, Nicholson GM, Gorse D, King GF (2011) ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res 39((database issue)):D653–D657

    Article  PubMed  CAS  Google Scholar 

  29. Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57(4):397–409

    Article  PubMed  CAS  Google Scholar 

  30. Billen B, Bosmans F, Tytgat J (2008) Animal peptides targeting voltage-activated sodium channels. Curr Pharm Des 14(24):2492–2502

    Article  PubMed  CAS  Google Scholar 

  31. King GF, Escoubas P, Nicholson GM (2008) Peptide toxins that selectively target insect NaV and CaV channels. Channels (Austin) 2(2):100–116

    Article  Google Scholar 

  32. Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB (2005) Ion channels: molecular targets of neuroactive insecticides. Invertebr Neurosci 5(3–4):119–133

    Article  CAS  Google Scholar 

  33. McCutchen BF, Choudary PV, Crenshaw R, Maddox D, Kamita SG, Palekar N, Volrath S, Fowler E, Hammock BD, Maeda S (1991) Development of a recombinant baculovirus expressing an insect-selective neurotoxin: potential for pest control. Biotechnology 9:848–852

    Article  PubMed  CAS  Google Scholar 

  34. Li D, Xiao Y, Hu W, Xie J, Bosmans F, Tytgat J, Liang S (2003) Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana. FEBS Lett 555(3):616–622

    Article  PubMed  CAS  Google Scholar 

  35. Xiao Y, Bingham JP, Zhu W, Moczydlowski E, Liang S, Cummins TR (2008) Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain II voltage sensor in the closed configuration. J Biol Chem 283(40):27300–27313

    Article  PubMed  CAS  Google Scholar 

  36. Xiao Y, Blumenthal K, Jackson JO 2nd, Liang S, Cummins TR (2010) The tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation. Mol Pharmacol 78(6):1124–1134

    Article  PubMed  CAS  Google Scholar 

  37. Wang M, Rong M, Xiao Y, Liang S (2012) The effects of huwentoxin-I on the voltage-gated sodium channels of rat hippocampal and cockroach dorsal unpaired median neurons. Peptides 34(1):19–25

    Article  PubMed  CAS  Google Scholar 

  38. Peng K, Chen XD, Liang SP (2001) The effect of Huwentoxin-I on Ca2+ channels in differentiated NG108-15 cells, a patch-clamp study. Toxicon 39(4):491–498

    Article  PubMed  CAS  Google Scholar 

  39. Figueiredo SG, Garcia ME, Valentim AC, Cordeiro MN, Diniz CR, Richardson M (1995) Purification and amino acid sequence of the insecticidal neurotoxin Tx4(6–1) from the venom of the ‘armed’ spider Phoneutria nigriventer (Keys). Toxicon 33(1):83–93

    Article  PubMed  CAS  Google Scholar 

  40. de Lima ME, Stankiewicz M, Hamon A, de Figueiredo SG, Cordeiro MN, Diniz CR, Martin-Eauclaire M, Pelhate M (2002) The toxin Tx4(6–1) from the spider Phoneutria nigriventer slows down Na+ current inactivation in insect CNS via binding to receptor site 3. J Insect Physiol 48(1):53–61

    Article  PubMed  Google Scholar 

  41. de Figueiredo SG, de Lima ME, Nascimento Cordeiro M, Diniz CR, Patten D, Halliwell RF, Gilroy J, Richardson M (2001) Purification and amino acid sequence of a highly insecticidal toxin from the venom of the Brazilian spider Phoneutria nigriventer which inhibits NMDA-evoked currents in rat hippocampal neurones. Toxicon 39(2–3):309–317

    Article  PubMed  Google Scholar 

  42. Oliveira LC, De Lima ME, Pimenta AM, Mansuelle P, Rochat H, Cordeiro MN, Richardson M, Figueiredo SG (2003) PnT4–3, a new insect toxin from Phoneutria nigriventer venom elicits the glutamate uptake inhibition exhibited by PhTx4 toxic fraction. Toxicon 42(7):793–800

    Article  PubMed  CAS  Google Scholar 

  43. Corzo G, Gilles N, Satake H, Villegas E, Dai L, Nakajima T, Haupt J (2003) Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel. FEBS Lett 547(1–3):43–50

    Article  PubMed  CAS  Google Scholar 

  44. Klint JK, Senff S, Rupasinghe DB, Er SY, Herzig V, Nicholson GM, King GF (2012) Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon 60(4):478–491

    Article  PubMed  CAS  Google Scholar 

  45. Corzo G, Escoubas P, Villegas E, Karbat I, Gordon D, Gurevitz M, Nakajima T, Gilles N (2005) A spider toxin that induces a typical effect of scorpion α-toxins but competes with β-toxins on binding to insect sodium channels. Biochemistry 44(5):1542–1549

    Article  PubMed  CAS  Google Scholar 

  46. Corzo G, Escoubas P, Stankiewicz M, Pelhate M, Kristensen CP, Nakajima T (2000) Isolation, synthesis and pharmacological characterization of δ-palutoxins IT, novel insecticidal toxins from the spider Paracoelotes luctuosus (Amaurobiidae). Eur J Biochem 267(18):5783–5795

    Article  PubMed  CAS  Google Scholar 

  47. Karbat I, Cohen L, Gilles N, Gordon D, Gurevitz M (2004) Conversion of a scorpion toxin agonist into an antagonist highlights an acidic residue involved in voltage sensor trapping during activation of neuronal Na+ channels. Faseb J 18(6):683–689

    Article  PubMed  CAS  Google Scholar 

  48. Cohen L, Karbat I, Gilles N, Froy O, Corzo G, Angelovici R, Gordon D, Gurevitz M (2004) Dissection of the functional surface of an anti-insect excitatory toxin illuminates a putative “hot spot” common to all scorpion β-toxins affecting Na+ channels. J Biol Chem 279(9):8206–8211

    Article  PubMed  CAS  Google Scholar 

  49. Billen B, Vassilevski A, Nikolsky A, Debaveye S, Tytgat J, Grishin E (2010) Unique bell-shaped voltage-dependent modulation of Na+ channel gating by novel insect-selective toxins from the spider Agelena orientalis. J Biol Chem 285(24):18545–18554

    Article  PubMed  CAS  Google Scholar 

  50. Adams ME (2004) Agatoxins: ion channel specific toxins from the American funnel web spider, Agelenopsis aperta. Toxicon 43(5):509–525

    Article  PubMed  CAS  Google Scholar 

  51. King GF (2007) Modulation of insect CaV channels by peptidic spider toxins. Toxicon 49(4):513–530

    Article  PubMed  CAS  Google Scholar 

  52. Wu S, Hayashi JH, Kinne LP, Dierks PM, Dierks CP (2004) New Lepidoptera calcium channel subunits, useful as active agents in agrochemical, veterinary or pharmaceutical fields, e.g. as insecticide, acaricide, or for treating infection, damage or discomfort caused by parasitic organisms. International Patent Application No. PCT/US2003/036001

  53. Wicher D, Penzlin H (1997) Ca2+ currents in central insect neurons: electrophysiological and pharmacological properties. J Neurophysiol 77(1):186–199

    PubMed  CAS  Google Scholar 

  54. Fletcher JI, Smith R, O’Donoghue SI, Nilges M, Connor M, Howden ME, Christie MJ, King GF (1997) The structure of a novel insecticidal neurotoxin, ω-atracotoxin-HV1, from the venom of an Australian funnel web spider. Nat Struct Biol 4(7):559–566

    Article  PubMed  CAS  Google Scholar 

  55. Atkinson RK, Howden MEH, Tyler MI, Vonarx EJ (1999) Insecticidal toxins derived from funnel web (Atrax or Hadronyche) spiders. US Patent 5,959,182, 28 Sept 1999

  56. Wang X, Smith R, Fletcher JI, Wilson H, Wood CJ, Howden ME, King GF (1999) Structure-function studies of ω-atracotoxin, a potent antagonist of insect voltage-gated calcium channels. Eur J Biochem 264(2):488–494

    Article  PubMed  CAS  Google Scholar 

  57. Tedford HW, Fletcher JI, King GF (2001) Functional significance of the β-hairpin in the insecticidal neurotoxin ω-atracotoxin-Hv1a. J Biol Chem 276:26568–26576

    Article  PubMed  CAS  Google Scholar 

  58. Tedford HW, Gilles N, Menez A, Doering CJ, Zamponi GW, King GF (2004) Scanning mutagenesis of ω-atracotoxin-Hv1a reveals a spatially restricted epitope that confers selective activity against insect calcium channels. J Biol Chem 279(42):44133–44140

    Article  PubMed  CAS  Google Scholar 

  59. Chong Y, Hayes JL, Sollod B, Wen S, Wilson DT, Hains PG, Hodgson WC, Broady KW, King GF, Nicholson GM (2007) The ω-atracotoxins: selective blockers of insect M-LVA and HVA calcium channels. Biochem Pharmacol 74(4):623–638

    Article  PubMed  CAS  Google Scholar 

  60. Wang XH, Connor M, Wilson D, Wilson HI, Nicholson GM, Smith R, Shaw D, Mackay JP, Alewood PF, Christie MJ, King GF (2001) Discovery and structure of a potent and highly specific blocker of insect calcium channels. J Biol Chem 276(43):40306–40312

    PubMed  CAS  Google Scholar 

  61. Kim JI, Konishi S, Iwai H, Kohno T, Gouda H, Shimada I, Sato K, Arata Y (1995) Three-dimensional solution structure of the calcium channel antagonist ω-agatoxin IVA: consensus molecular folding of calcium channel blockers. J Mol Biol 250(5):659–671

    Article  PubMed  CAS  Google Scholar 

  62. Zhang PF, Chen P, Hu WJ, Liang SP (2003) Huwentoxin-V, a novel insecticidal peptide toxin from the spider Selenocosmia huwena, and a natural mutant of the toxin: indicates the key amino acid residues related to the biological activity. Toxicon 42(1):15–20

    Article  PubMed  CAS  Google Scholar 

  63. Bodi J, Nishio H, Zhou Y, Branton WD, Kimura T, Sakakibara S (1995) Synthesis of an O-palmitoylated 44-residue peptide amide (PLTX-II) blocking presynaptic calcium channels in Drosophila. Pept Res 8(4):228–235

    PubMed  CAS  Google Scholar 

  64. Villegas E, Adachi-Akahane S, Bosmans F, Tytgat J, Nakajima T, Corzo G (2008) Biochemical characterization of cysteine-rich peptides from Oxyopes sp. venom that block calcium ion channels. Toxicon 52(2):228–236

    Article  PubMed  CAS  Google Scholar 

  65. Wang X, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, Christie MJ, King GF (2000) Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat Struct Biol 7(6):505–513

    Article  PubMed  CAS  Google Scholar 

  66. Maggio F, King GF (2002) Scanning mutagenesis of a Janus-faced atracotoxin reveals a bipartite surface patch that is essential for neurotoxic function. J Biol Chem 277(25):22806–22813

    Article  PubMed  CAS  Google Scholar 

  67. Gunning SJ, Maggio F, Windley MJ, Valenzuela SM, King GF, Nicholson GM (2008) The Janus-faced atracotoxins are specific blockers of invertebrate KCa channels. FEBS J 275(16):4045–4059

    Article  PubMed  CAS  Google Scholar 

  68. Mobli M, de Araujo AD, Lambert LK, Pierens GK, Windley MJ, Nicholson GM, Alewood PF, King GF (2009) Direct visualization of disulfide bonds through diselenide proxies using 77Se NMR spectroscopy. Angew Chem Int Ed 48(49):9312–9314

    Article  CAS  Google Scholar 

  69. Giangiacomo KM, Becker J, Garsky C, Schmalhofer W, Garcia ML, Mullmann TJ (2008) Novel α-KTx sites in the BK channel and comparative sequence analysis reveal distinguishing features of the BK and KV channel outer pore. Cell Biochem Biophys 52(1):47–58

    Article  PubMed  CAS  Google Scholar 

  70. Myers MP, Stampe P (2000) A point mutation in the maxi-K clone dSlo forms a high affinity site for charybdotoxin. Neuropharmacol 39(1):11–20

    Article  CAS  Google Scholar 

  71. Dauplais M, Lecoq A, Song J, Cotton J, Jamin N, Gilquin B, Roumestand C, Vita C, de Medeiros CL, Rowan EG, Harvey AL, Menez A (1997) On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem 272(7):4302–4309

    Article  PubMed  CAS  Google Scholar 

  72. Mosbah A, Kharrat R, Fajloun Z, Renisio JG, Blanc E, Sabatier JM, El Ayeb M, Darbon H (2000) A new fold in the scorpion toxin family, associated with an activity on a ryanodine-sensitive calcium channel. Proteins 40(3):436–442

    Article  PubMed  CAS  Google Scholar 

  73. Wudayagiri R, Inceoglu B, Herrmann R, Derbel M, Choudary PV, Hammock BD (2001) Isolation and characterization of a novel lepidopteran-selective toxin from the venom of South Indian red scorpion, Mesobuthus tamulus. BMC Biochem 216(2):16

    Article  Google Scholar 

  74. DeBin JA, Maggio JE, Strichartz GR (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol 264(2 Pt 1):C361–C369

    PubMed  CAS  Google Scholar 

  75. Tytgat J, Debont T, Rostoll K, Muller GJ, Verdonck F, Daenens P, van der Walt JJ, Possani LD (1998) Purification and partial characterization of a ‘short’ insectotoxin-like peptide from the venom of the scorpion Parabuthus schlechteri. FEBS Lett 441(3):387–391

    Article  PubMed  CAS  Google Scholar 

  76. Deshane J, Garner CC, Sontheimer H (2003) Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem 278(6):4135–4144

    Article  PubMed  CAS  Google Scholar 

  77. Kesavan K, Ratliff J, Johnson EW, Dahlberg W, Asara JM, Misra P, Frangioni JV, Jacoby DB (2010) Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects. J Biol Chem 285(7):4366–4374

    Article  PubMed  CAS  Google Scholar 

  78. Grishin EV, Soldatov NM, Ovchinnikov YA (1980) The nature of the membrane-receptors for scorpion-venom neurotoxin. Bioorg Khim 6(6):914–922

    CAS  Google Scholar 

  79. Fitches EC, Bell HA, Powell ME, Back E, Sargiotti C, Weaver RJ, Gatehouse JA (2010) Insecticidal activity of scorpion toxin (ButaIT) and snowdrop lectin (GNA) containing fusion proteins towards pest species of different orders. Pest Manag Sci 66(1):74–83

    Article  PubMed  CAS  Google Scholar 

  80. UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucl Acids Res 40:D71–D75

    Article  CAS  Google Scholar 

  81. Lewis RJ (2009) Conotoxin venom peptide therapeutics. Adv Exp Med Biol 655:44–48

    Article  PubMed  CAS  Google Scholar 

  82. Norton RS (2010) μ-Conotoxins as leads in the development of new analgesics. Molecules 15(4):2825–2844

    Article  PubMed  CAS  Google Scholar 

  83. Lewis RJ, Dutertre S, Vetter I, Christie MJ (2012) Conus venom peptide pharmacology. Pharmacol Rev 64(2):259–298

    Article  PubMed  CAS  Google Scholar 

  84. Wicher D, Penzlin H (1998) ω-Toxins affect Na+ currents in neurosecretory insect neurons. Receptors Channels 5(6):355–366

    PubMed  CAS  Google Scholar 

  85. Shon KJ, Stocker M, Terlau H, Stuhmer W, Jacobsen R, Walker C, Grilley M, Watkins M, Hillyard DR, Gray WR, Olivera BM (1998) κ-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. J Biol Chem 273(1):33–38

    Article  PubMed  CAS  Google Scholar 

  86. McCleskey EW, Fox AP, Feldman DH, Cruz LJ, Olivera BM, Tsien RW, Yoshikami D (1987) ω-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sci USA 84(12):4327–4331

    Article  PubMed  CAS  Google Scholar 

  87. Hillyard DR, Monje VD, Mintz IM, Bean BP, Nadasdi L, Ramachandran J, Miljanich G, Azimi-Zoonooz A, McIntosh JM, Cruz LJ et al (1992) A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron 9(1):69–77

    Article  PubMed  CAS  Google Scholar 

  88. Terlau H, Shon KJ, Grilley M, Stocker M, Stuhmer W, Olivera BM (1996) Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 381(6578):148–151

    Article  PubMed  CAS  Google Scholar 

  89. Hillyard DR, Olivera BM, Woodward S, Corpuz GP, Gray WR, Ramilo CA, Cruz LJ (1989) A molluscivorous Conus toxin: conserved frameworks in conotoxins. Biochemistry 28(1):358–361

    Article  PubMed  CAS  Google Scholar 

  90. Fainzilber M, Gordon D, Hasson A, Spira ME, Zlotkin E (1991) Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur J Biochem 202(2):589–595

    Article  PubMed  CAS  Google Scholar 

  91. Bruce C, Fitches EC, Chougule N, Bell HA, Gatehouse JA (2011) Recombinant conotoxin, TxVIA, produced in yeast has insecticidal activity. Toxicon 58(1):93–100

    Article  PubMed  CAS  Google Scholar 

  92. Fainzilber M, Kofman O, Zlotkin E, Gordon D (1994) A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. J Biol Chem 269(4):2574–2580

    PubMed  CAS  Google Scholar 

  93. Fainzilber M, Lodder JC, Kits KS, Kofman O, Vinnitsky I, Van Rietschoten J, Zlotkin E, Gordon D (1995) A new conotoxin affecting sodium current inactivation interacts with the δ-conotoxin receptor site. J Biol Chem 270(3):1123–1129

    Article  PubMed  CAS  Google Scholar 

  94. Leipold E, Hansel A, Olivera BM, Terlau H, Heinemann SH (2005) Molecular interaction of δ-conotoxins with voltage-gated sodium channels. FEBS Lett 579(18):3881–3884

    Article  PubMed  CAS  Google Scholar 

  95. Heinemann SH, Leipold E (2007) Conotoxins of the O-superfamily affecting voltage-gated sodium channels. Cell Mol Life Sci 64(11):1329–1340

    Article  PubMed  CAS  Google Scholar 

  96. Kohno T, Sasaki T, Kobayashi K, Fainzilber M, Sato K (2002) Three-dimensional solution structure of the sodium channel agonist/antagonist δ-conotoxin TxVIA. J Biol Chem 277(39):36387–36391

    Article  PubMed  CAS  Google Scholar 

  97. Bontems F, Roumestand C, Gilquin B, Menez A, Toma F (1991) Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science 254(5037):1521–1523

    Article  PubMed  CAS  Google Scholar 

  98. Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3(5):435–448

    Article  PubMed  CAS  Google Scholar 

  99. Wong JH, Xia L, Ng TB (2007) A review of defensins of diverse origins. Curr Prot Pept Sci 8(5):446–459

    Article  CAS  Google Scholar 

  100. Zhu S, Gao B, Tytgat J (2005) Phylogenetic distribution, functional epitopes and evolution of the CSαβ superfamily. Cell Mol Life Sci 62(19–20):2257–2269

    Article  PubMed  CAS  Google Scholar 

  101. Rodriguez de la Vega RC, Possani LD (2004) Current views on scorpion toxins specific for K+-channels. Toxicon 43(8):865–875

    Article  PubMed  CAS  Google Scholar 

  102. Zlotkin E, Rochat H, Miranda F, Kopeyan C, Lissitzky S (1971) Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochimie 53(10):1073–1078

    Article  PubMed  CAS  Google Scholar 

  103. Borchani L, Mansuelle P, Stankiewicz M, Grolleau F, Cestele S, Karoui H, Lapied B, Rochat H, Pelhate M, el Ayeb M (1996) A new scorpion venom toxin paralytic to insects that affects Na+ channel activation. Purification, structure, antigenicity and mode of action. Eur J Biochem 241(2):525–532

    Article  PubMed  CAS  Google Scholar 

  104. Zilberberg N, Gordon D, Pelhate M, Adams ME, Norris TM, Zlotkin E, Gurevitz M (1996) Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35(31):10215–10222

    Article  PubMed  CAS  Google Scholar 

  105. Cestele S, Borchani L, El Ayeb M, Rochat H (1997) Bot IT2: a new scorpion toxin to study receptor site on insect sodium channels. FEBS Lett 405(1):77–80

    Article  PubMed  CAS  Google Scholar 

  106. Eitan M, Fowler E, Herrmann R, Duval A, Pelhate M, Zlotkin E (1990) A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. Biochemistry 29(25):5941–5947

    Article  PubMed  CAS  Google Scholar 

  107. Gurevitz M, Zlotkin E, Zilberberg N (1990) Characterization of the transcript for a depressant insect selective neurotoxin gene with an isolated cDNA clone from the scorpion Buthotus judaicus. FEBS Lett 269(1):229–232

    Article  PubMed  CAS  Google Scholar 

  108. Selisko B, Garcia C, Becerril B, Delepierre M, Possani LD (1996) An insect-specific toxin from Centruroides noxius Hoffmann. cDNA, primary structure, three-dimensional model and electrostatic surface potentials in comparison with other toxin variants. Eur J Biochem 242(2):235–242

    Article  PubMed  CAS  Google Scholar 

  109. Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49(2):124–141

    Article  PubMed  CAS  Google Scholar 

  110. Bosmans F, Tytgat J (2007) Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon 49(2):142–158

    Article  PubMed  CAS  Google Scholar 

  111. Karbat I, Frolow F, Froy O, Gilles N, Cohen L, Turkov M, Gordon D, Gurevitz M (2004) Molecular basis of the high insecticidal potency of scorpion α-toxins. J Biol Chem 279(30):31679–31686

    Article  PubMed  CAS  Google Scholar 

  112. Karbat I, Kahn R, Cohen L, Ilan N, Gilles N, Corzo G, Froy O, Gur M, Albrecht G, Heinemann SH, Gordon D, Gurevitz M (2007) The unique pharmacology of the scorpion α-like toxin Lqh3 is associated with its flexible C-tail. FEBS J 274(8):1918–1931

    Article  PubMed  CAS  Google Scholar 

  113. He XL, Li HM, Zeng ZH, Liu XQ, Wang M, Wang DC (1999) Crystal structures of two α-like scorpion toxins: non-proline cis peptide bonds and implications for new binding site selectivity on the sodium channel. J Mol Biol 292(1):125–135

    Article  PubMed  CAS  Google Scholar 

  114. Guan RJ, Xiang Y, He XL, Wang CG, Wang M, Zhang Y, Sundberg EJ, Wang DC (2004) Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins. J Mol Biol 341(5):1189–1204

    Article  PubMed  CAS  Google Scholar 

  115. Ye X, Bosmans F, Li C, Zhang Y, Wang DC, Tytgat J (2005) Structural basis for the voltage-gated Na+ channel selectivity of the scorpion α-like toxin BmK M1. J Mol Biol 353(4):788–803

    Article  PubMed  CAS  Google Scholar 

  116. Zhu J, Tong X, Cao C, Wu G, Zhang N, Wu H (2010) Solution structure of BmKalphaTx11, a toxin from the venom of the Chinese scorpion Buthus martensii Karsch. Biochem Biophys Res Commun 391(1):627–633

    Article  PubMed  CAS  Google Scholar 

  117. Li HM, Wang DC, Zeng ZH, Jin L, Hu RQ (1996) Crystal structure of an acidic neurotoxin from scorpion Buthus martensii Karsch at 1.85 Å resolution. J Mol Biol 261(3):415–431

    Article  PubMed  CAS  Google Scholar 

  118. Krimm I, Gilles N, Sautiere P, Stankiewicz M, Pelhate M, Gordon D, Lancelin JM (1999) NMR structures and activity of a novel α-like toxin from the scorpion Leiurus quinquestriatus hebraeus. J Mol Biol 285(4):1749–1763

    Article  PubMed  CAS  Google Scholar 

  119. Zhu S, Peigneur S, Gao B, Lu X, Cao C, Tytgat J (2012) Evolutionary diversification of Mesobuthus α-scorpion toxins affecting sodium channels. Mol Cell Proteomics 11(1):1–18

    CAS  Google Scholar 

  120. Gur M, Kahn R, Karbat I, Regev N, Wang J, Catterall WA, Gordon D, Gurevitz M (2011) Elucidation of the molecular basis of selective recognition uncovers the interaction site for the core domain of scorpion α-toxins on sodium channels. J Biol Chem 286(40):35209–35217

    Article  PubMed  CAS  Google Scholar 

  121. Cohen L, Karbat I, Gilles N, Ilan N, Benveniste M, Gordon D, Gurevitz M (2005) Common features in the functional surface of scorpion β-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels. J Biol Chem 280(6):5045–5053

    Article  PubMed  CAS  Google Scholar 

  122. Karbat I, Turkov M, Cohen L, Kahn R, Gordon D, Gurevitz M, Frolow F (2007) X-ray structure and mutagenesis of the scorpion depressant toxin LqhIT2 reveals key determinants crucial for activity and anti-insect selectivity. J Mol Biol 366(2):586–601

    Article  PubMed  CAS  Google Scholar 

  123. Froy O, Zilberberg N, Gordon D, Turkov M, Gilles N, Stankiewicz M, Pelhate M, Loret E, Oren DA, Shaanan B, Gurevitz M (1999) The putative bioactive surface of insect-selective scorpion excitatory neurotoxins. J Biol Chem 274(9):5769–5776

    Article  PubMed  CAS  Google Scholar 

  124. Pinheiro CB, Marangoni S, Toyama MH, Polikarpov I (2003) Structural analysis of Tityus serrulatus Ts1 neurotoxin at atomic resolution: insights into interactions with Na+ channels. Acta Crystallogr Sect D 59(3):405–415

    Article  CAS  Google Scholar 

  125. Pintar A, Possani LD, Delepierre M (1999) Solution structure of toxin 2 from Centruroides noxius Hoffmann, a β-scorpion neurotoxin acting on sodium channels. J Mol Biol 287(2):359–367

    Article  PubMed  CAS  Google Scholar 

  126. Li YJ, Tan ZY, Ji YH (2000) The binding of BmK IT2, a depressant insect-selective scorpion toxin on mammal and insect sodium channels. Neurosci Res 38(3):257–264

    Article  PubMed  CAS  Google Scholar 

  127. Gordon D, Moskowitz H, Eitan M, Warner C, Catterall WA, Zlotkin E (1992) Localization of receptor sites for insect-selective toxins on sodium channels by site-directed antibodies. Biochemistry 31(33):7622–7628

    Article  PubMed  CAS  Google Scholar 

  128. Gordon D, Jover E, Couraud F, Zlotkin E (1984) The binding of the insect-selective neurotoxin (AaIT) from scorpion-venom to locust synaptosomal membranes. Biochim Biophys Acta 778(2):349–358

    Article  CAS  Google Scholar 

  129. Cestele S, Kopeyan C, Oughideni R, Mansuelle P, Granier C, Rochat H (1997) Biochemical and pharmacological characterization of a depressant insect toxin from the venom of the scorpion Buthacus arenicola. Eur J Biochem 243(1–2):93–99

    Article  PubMed  CAS  Google Scholar 

  130. Shichor I, Zlotkin E, Ilan N, Chikashvili D, Stuhmer W, Gordon D, Lotan I (2002) Domain 2 of Drosophila para voltage-gated sodium channel confers insect properties to a rat brain channel. J Neurosci 22(11):4364–4371

    PubMed  CAS  Google Scholar 

  131. He H, Liu Z, Dong B, Zhang J, Shu X, Zhou J, Ji Y (2011) Localization of receptor site on insect sodium channel for depressant β-toxin BmK IT2. PLoS ONE 6(1):e14510

    Article  PubMed  CAS  Google Scholar 

  132. Wang J, Yarov-Yarovoy V, Kahn R, Gordon D, Gurevitz M, Scheuer T, Catterall WA (2011) Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci USA 108(37):15426–15431

    Article  PubMed  CAS  Google Scholar 

  133. Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA (2012) Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na+ channels. J Biol Chem 287(36):30719–30728

    Article  PubMed  CAS  Google Scholar 

  134. Herrmann R, Fishman L, Zlotkin E (1990) The tolerance of lepidopterous larvae to an insect selective neurotoxin. Insect Biochemistry 20(6):625–637

    Article  CAS  Google Scholar 

  135. Zlotkin E, Fishman L, Shapiro JP (1992) Oral toxicity to flesh flies of a neurotoxic polypeptide. Arch Insect Biochem Physiol 21(1):41–52

    Article  PubMed  CAS  Google Scholar 

  136. Fishman L, Herrmann R, Gordon D, Zlotkin E (1997) Insect tolerance to a neurotoxic polypeptide: pharmacokinetic and pharmacodynamic aspects. J Exp Biol 200(Pt 7):1115–1123

    PubMed  CAS  Google Scholar 

  137. Kozminsky-Atias A, Somech E, Zilberberg N (2007) Isolation of the first toxin from the scorpion Buthus occitanus israelis showing preference for shaker potassium channels. FEBS Lett 581(13):2478–2484

    Article  PubMed  CAS  Google Scholar 

  138. Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY (1987) Sequence of a probable potassium channel component encoded at shaker locus of Drosophila. Science 237(4816):770–775

    Article  PubMed  CAS  Google Scholar 

  139. Garcia ML, Garcia-Calvo M, Hidalgo P, Lee A, MacKinnon R (1994) Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry 33(22):6834–6839

    Article  PubMed  CAS  Google Scholar 

  140. Tytgat J, Chandy KG, Garcia ML, Gutman GA, Martin-Eauclaire MF, van der Walt JJ, Possani LD (1999) A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. Trends Pharmacol Sci 20(11):444–447

    Article  PubMed  CAS  Google Scholar 

  141. Ranganathan R, Lewis JH, MacKinnon R (1996) Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron 16(1):131–139

    Article  PubMed  CAS  Google Scholar 

  142. Eriksson MA, Roux B (2002) Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles. Biophys J 83(5):2595–2609

    Article  PubMed  CAS  Google Scholar 

  143. Smith JJ, Hill JM, Little MJ, Nicholson GM, King GF, Alewood PF (2011) Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif. Proc Natl Acad Sci USA 108(26):10478–10483

    Article  PubMed  CAS  Google Scholar 

  144. Corzo G, Bernard C, Clement H, Villegas E, Bosmans F, Tytgat J, Possani LD, Darbon H, Alagon A (2009) Insecticidal peptides from the theraposid spider Brachypelma albiceps: an NMR-based model of Ba2. Biochim Biophys Acta 1794(8):1190–1196

    Article  PubMed  CAS  Google Scholar 

  145. Nason DM, Douglas P, Saccomano NA, Volkmann RA (1995) Calcium channel blocking polypeptides from Theraphosidae Aphonopelma. European Patent EP0668872, 13 May 1998

  146. Matsushita N, Miyashita M, Sakai A, Nakagawa Y, Miyagawa H (2007) Purification and characterization of a novel short-chain insecticidal toxin with two disulfide bridges from the venom of the scorpion Liocheles australasiae. Toxicon 50(6):861–867

    Article  PubMed  CAS  Google Scholar 

  147. Silva EC, Camargos TS, Maranhao AQ, Silva-Pereira I, Silva LP, Possani LD, Schwartz EF (2009) Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon 54(3):252–261

    Article  PubMed  CAS  Google Scholar 

  148. Grundemar L, Hakanson R (1994) Neuropeptide Y effector systems: perspectives for drug development. Trends Pharmacol Sci 15(5):153–159

    Article  PubMed  CAS  Google Scholar 

  149. Erdos EG (1966) Hypotensive peptides: bradykinin, kallidin, and eledoisin. Adv Pharmacol 4:1–90

    Article  PubMed  CAS  Google Scholar 

  150. Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci USA 87(18):7120–7124

    Article  PubMed  CAS  Google Scholar 

  151. Gao B, Tian C, Zhu S (2007) Inducible antibacterial response of scorpion venom gland. Peptides 28(12):2299–2305

    Article  PubMed  CAS  Google Scholar 

  152. Kuhn-Nentwig L, Stöcklin R, Nentwig W (2011) Venom composition and strategies in spiders: is everything possible? In: Casas J (ed) Spider physiology and behaviour—physiology, vol 40. Advances in insect physiology. Elsevier, New York, pp 1–86.141

  153. Veal DA, Trimble JE, Beattie AJ (1992) Antimicrobial properties of secretions from the metapleural glands of Myrmecia gulosa (the Australian bull ant). J Appl Bacteriol 72(3):188–194

    Article  PubMed  CAS  Google Scholar 

  154. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K (1990) A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem 265(19):11333–11337

    PubMed  CAS  Google Scholar 

  155. Bechinger B (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1462(1–2):157–183

    PubMed  CAS  Google Scholar 

  156. Zeng XC, Corzo G, Hahin R (2005) Scorpion venom peptides without disulfide bridges. IUBMB Life 57(1):13–21

    Article  PubMed  CAS  Google Scholar 

  157. Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60(12):2651–2668

    Article  PubMed  CAS  Google Scholar 

  158. Vassilevski AA, Kozlov SA, Samsonova OV, Egorova NS, Karpunin DV, Pluzhnikov KA, Feofanov AV, Grishin EV (2008) Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem J 411(3):687–696

    Article  PubMed  CAS  Google Scholar 

  159. Miyashita M, Sakai A, Matsushita N, Hanai Y, Nakagawa Y, Miyagawa H (2010) A novel amphipathic linear peptide with both insect toxicity and antimicrobial activity from the venom of the scorpion Isometrus maculatus. Biosci Biotechnol Biochem 74(2):364–369

    Article  PubMed  CAS  Google Scholar 

  160. Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T (2002) Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem 277(26):23627–23637

    Article  PubMed  CAS  Google Scholar 

  161. Dutertre S, Lumsden NG, Alewood PF, Lewis RJ (2006) Isolation and characterisation of conomap-Vt, a D-amino acid containing excitatory peptide from the venom of a vermivorous cone snail. FEBS Lett 580(16):3860–3866

    Article  PubMed  CAS  Google Scholar 

  162. Paemen L, Tips A, Schoofs L, Proost P, Van Damme J, De Loof A (1991) Lom-AG-myotropin: a novel myotropic peptide from the male accessory glands of Locusta migratoria. Peptides 12(1):7–10

    Article  PubMed  CAS  Google Scholar 

  163. Harada A, Yoshida M, Minakata H, Nomoto K, Muneoka Y, Kobayashi M (1993) Structure and function of the molluscan myoactive tetradecapeptides. Zool Sci 10(2):257–265

    PubMed  CAS  Google Scholar 

  164. Prado-Montes de Oca E (2010) Human β-defensin 1: a restless warrior against allergies, infections and cancer. Int J Biochem Cell Biol 42(6):800–804

    Article  PubMed  CAS  Google Scholar 

  165. Beaumont KA, Smit DJ, Liu YY, Chai E, Patel MP, Millhauser GL, Smith JJ, Alewood PF, Sturm RA (2012) Melanocortin-1 receptor-mediated signalling pathways activated by NDP-MSH and HBD3 ligands. Pigment Cell Melanoma Res 25(3):370–374

    Article  PubMed  CAS  Google Scholar 

  166. Nicastro G, Franzoni L, de Chiara C, Mancin AC, Giglio JR, Spisni A (2003) Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. Eur J Biochem 270(9):1969–1979

    Article  PubMed  CAS  Google Scholar 

  167. Torres AM, Wang X, Fletcher JI, Alewood D, Alewood PF, Smith R, Simpson RJ, Nicholson GM, Sutherland SK, Gallagher CH, King GF, Kuchel PW (1999) Solution structure of a defensin-like peptide from platypus venom. Biochem J 341(3):785–794

    Article  PubMed  CAS  Google Scholar 

  168. Norton RS (2009) Structures of sea anemone toxins. Toxicon 54(8):1075–1088

    Article  PubMed  CAS  Google Scholar 

  169. Moran Y, Weinberger H, Reitzel AM, Sullivan JC, Kahn R, Gordon D, Finnerty JR, Gurevitz M (2008) Intron retention as a posttranscriptional regulatory mechanism of neurotoxin expression at early life stages of the starlet anemone Nematostella vectensis. J Mol Biol 380(3):437–443

    Article  PubMed  CAS  Google Scholar 

  170. Peigneur S, Beress L, Moller C, Mari F, Forssmann WG, Tytgat J (2012) A natural point mutation changes both target selectivity and mechanism of action of sea anemone toxins. Faseb J 26(12):5141–5151

    Article  PubMed  CAS  Google Scholar 

  171. Bosmans F, Aneiros A, Tytgat J (2002) The sea anemone Bunodosoma granulifera contains surprisingly efficacious and potent insect-selective toxins. FEBS Lett 532(1–2):131–134

    Article  PubMed  CAS  Google Scholar 

  172. Moran Y, Kahn R, Cohen L, Gur M, Karbat I, Gordon D, Gurevitz M (2007) Molecular analysis of the sea anemone toxin Av3 reveals selectivity to insects and demonstrates the heterogeneity of receptor site-3 on voltage-gated Na+ channels. Biochem J 406(1):41–48

    Article  PubMed  CAS  Google Scholar 

  173. Loret EP, del Valle RM, Mansuelle P, Sampieri F, Rochat H (1994) Positively charged amino acid residues located similarly in sea anemone and scorpion toxins. J Biol Chem 269(24):16785–16788

    PubMed  CAS  Google Scholar 

  174. Manoleras N, Norton RS (1994) Three-dimensional structure in solution of neurotoxin III from the sea anemone Anemonia sulcata. Biochemistry 33(37):11051–11061

    Article  PubMed  CAS  Google Scholar 

  175. Frank PG, Bleakney JS (1978) Asexual reproduction, diet, and anomalies of anemone Nematostella vectensis in Nova Scotia. Can Field Nat 92(3):259–263

    Google Scholar 

  176. Moran Y, Cohen L, Kahn R, Karbat I, Gordon D, Gurevitz M (2006) Expression and mutagenesis of the sea anemone toxin Av2 reveals key amino acid residues important for activity on voltage-gated sodium channels. Biochemistry 45(29):8864–8873

    Article  PubMed  CAS  Google Scholar 

  177. Seibert AL, Liu J, Hanck DA, Blumenthal KM (2004) Role of Asn-16 and Ser-19 in anthopleurin B binding. Implications for the electrostatic nature of NaV site 3. Biochemistry 43(22):7082–7089

    Article  PubMed  CAS  Google Scholar 

  178. Dias-Kadambi BL, Drum CL, Hanck DA, Blumenthal KM (1996) Leucine 18, a hydrophobic residue essential for high affinity binding of anthopleurin B to the voltage-sensitive sodium channel. J Biol Chem 271(16):9422–9428

    Article  PubMed  CAS  Google Scholar 

  179. Khera PK, Blumenthal KM (1996) Importance of highly conserved anionic residues and electrostatic interactions in the activity and structure of the cardiotonic polypeptide anthopleurin B. Biochemistry 35(11):3503–3507

    Article  PubMed  CAS  Google Scholar 

  180. Jimenez EC, Watkins M, Juszczak LJ, Cruz LJ, Olivera BM (2001) Contryphans from Conus textile venom ducts. Toxicon 39(6):803–808

    Article  PubMed  CAS  Google Scholar 

  181. Kaas Q, Yu R, Jin AH, Dutertre S, Craik DJ (2012) ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucl Acids Res 40:D325–D330

    Article  PubMed  CAS  Google Scholar 

  182. Massilia GR, Eliseo T, Grolleau F, Lapied B, Barbier J, Bournaud R, Molgo J, Cicero DO, Paci M, Schinina ME, Ascenzi P, Polticelli F (2003) Contryphan-Vn: a modulator of Ca2+-dependent K+ channels. Biochem Biophys Res Commun 303(1):238–246

    Article  PubMed  CAS  Google Scholar 

  183. Kini RM, Doley R (2010) Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56(6):855–867

    Article  PubMed  CAS  Google Scholar 

  184. Brown LR, Wuthrich K (1992) Nuclear magnetic resonance solution structure of the α-neurotoxin from the black mamba (Dendroaspis polylepis polylepis). J Mol Biol 227(4):1118–1135

    Article  PubMed  CAS  Google Scholar 

  185. Hue B, Buckingham SD, Buckingham D, Sattelle DB (2007) Actions of snake neurotoxins on an insect nicotinic cholinergic synapse. Invertebr Neurosci 7(3):173–178

    Article  CAS  Google Scholar 

  186. Rohou A, Nield J, Ushkaryov YA (2007) Insecticidal toxins from black widow spider venom. Toxicon 49(4):531–549

    Article  PubMed  CAS  Google Scholar 

  187. Johnson JH, Kral RM, Krapcho K (2001) Insecticidal toxins from Bracon hebetor nucleic acid encoding said toxin and methods of use. US Patent 5,874,298, 17 Feb 1995

  188. Zobel-Thropp PA, Kerins AE, Binford GJ (2012) Sphingomyelinase D in sicariid spider venom is a potent insecticidal toxin. Toxicon 60(3):265–271

    Article  PubMed  CAS  Google Scholar 

  189. Swanson DL, Vetter RS (2006) Loxoscelism. Clin Dermatol 24(3):213–221

    Article  PubMed  Google Scholar 

  190. Mukherjee AK, Sollod BL, Wikel SK, King GF (2006) Orally active acaricidal peptide toxins from spider venom. Toxicon 47:182–187

    Article  PubMed  CAS  Google Scholar 

  191. Casartelli M, Corti P, Giovanna Leonardi M, Fiandra L, Burlini N, Pennacchio F, Giordana B (2005) Absorption of albumin by the midgut of a lepidopteran larva. J Insect Physiol 51(8):933–940

    Article  PubMed  CAS  Google Scholar 

  192. Fitches E, Woodhouse SD, Edwards JP, Gatehouse JA (2001) In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action. J Insect Physiol 47:777–787

    Article  PubMed  CAS  Google Scholar 

  193. Fitches EC, Pyati P, King GF, Gatehouse JA (2012) Fusion to snowdrop lectin magnifies the oral activity of insecticidal ω-hexatoxin-Hv1a peptide by enabling its delivery to the central nervous system. PLoS ONE 7(6):e39389

    Article  PubMed  CAS  Google Scholar 

  194. Down RE, Fitches EC, Wiles DP, Corti P, Bell HA, Gatehouse JA, Edwards JP (2006) Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag Sci 62(1):77–85

    Article  PubMed  CAS  Google Scholar 

  195. Fitches E, Edwards M, Mee C, Grishin E, Gatehouse A, Edwards J, Gatehouse J (2004) Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 50:61–71

    Article  PubMed  CAS  Google Scholar 

  196. Bonning BC, Hammock BD (1996) Development of recombinant baculoviruses for insect control. Annu Rev Entomol 41:191–210

    Article  PubMed  CAS  Google Scholar 

  197. Wang C, St Leger RJ (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25(12):1455–1456

    Article  PubMed  CAS  Google Scholar 

  198. Charnley AK, Collins SA (2007) Entomopathogenic fungi and their role in pest control. In: Kubicek CP, Druzhinina IS (eds) The Mycota IV: environmental and microbial relationships, vol 4, 2nd edn. Springer, Berlin, pp 159–187

    Google Scholar 

  199. Gatehouse AM, Ferry N, Edwards MG, Bell HA (2011) Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos Trans R Soc Lond B Biol Sci 366(1569):1438–1452

    Article  PubMed  CAS  Google Scholar 

  200. Jiang H, Zhu YX, Che ZL (1996) Insect resistance of transformed tobacco plants with the gene of the spider insecticidal peptide. J Integr Plant Biol (Acta Botan Sin) 38(2):95–99

    CAS  Google Scholar 

  201. Omar A, Ali Chatha K (2012) National Institute for Biotechnology and Genetic Engineering (NIBGE): genetically modified spider cotton. Asian J Manag Cases 9:33–58

    Article  Google Scholar 

  202. Khan SA, Zafar Y, Briddon RW, Malik KA, Mukhtar Z (2006) Spider venom toxin protects plants from insect attack. Transgenic Res 15(3):349–357

    Article  PubMed  CAS  Google Scholar 

  203. Cao C-W, Liu G-F, Wang Z-Y, Yan S-C, Ma L, Yang C-P (2010) Response of the gypsy moth, Lymantria dispar to transgenic poplar, Populus simonii × P. nigra, expressing fusion protein gene of the spider insecticidal peptide and Bt-toxin C-peptide. J Insect Sci 10(200):1–13

    Article  Google Scholar 

  204. Hernández-Campuzano B, Suárez R, Lina L, Hernández V, Villegas E, Corzo G, Iturriaga G (2009) Expression of a spider venom peptide in transgenic tobacco confers insect resistance. Toxicon 53(1):122–128

    Article  PubMed  CAS  Google Scholar 

  205. Soberon M, Fernandez LE, Perez C, Gill SS, Bravo A (2007) Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon 49:597–600

    Article  PubMed  CAS  Google Scholar 

  206. Baconguis I, Gouaux E (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 489(7416):400–405

    Article  PubMed  CAS  Google Scholar 

  207. Dawson RJ, Benz J, Stohler P, Tetaz T, Joseph C, Huber S, Schmid G, Hügin D, Pflimlin P, Trube G, Rudolph MG, Hennig M, Ruf A (2012) Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nat. Commun 3:936

    Article  PubMed  CAS  Google Scholar 

  208. Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440(7086):959–962

    Article  PubMed  CAS  Google Scholar 

  209. Bourne Y, Talley TT, Hansen SB, Taylor P, Marchot P (2005) Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha- neurotoxins and nicotinic receptors. EMBO J 24(8):1512–1522

    Article  PubMed  CAS  Google Scholar 

  210. Celie PH, Kasheverov IE, Mordvintsev DY, Hogg RC, van Nierop P, van Elk R, van Rossum-Fikkert SE, Zhmak MN, Bertrand D, Tsetlin V, Sixma TK, Smit AB (2005) Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant. Nat Struct Mol Biol 12(7):582–588

    Article  PubMed  CAS  Google Scholar 

  211. Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L (2007) Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci 10(8):953–962

    Article  PubMed  CAS  Google Scholar 

  212. Cestele S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82(9–10):883–892

    Article  PubMed  CAS  Google Scholar 

  213. Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stuhmer W, Tytgat J, Gurevitz M (2007) The differential preference of scorpion α-toxins for insect or mammalian sodium channels: implications for improved insect control. Toxicon 49(4):452–472

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Glenn F. King or Paul F. Alewood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J.J., Herzig, V., King, G.F. et al. The insecticidal potential of venom peptides. Cell. Mol. Life Sci. 70, 3665–3693 (2013). https://doi.org/10.1007/s00018-013-1315-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1315-3

Keywords

Navigation