Skip to main content

Advertisement

Log in

Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Metabolic reprogramming is widely observed during cancer development to confer cancer cells the ability to survive and proliferate, even under the stressed, such as nutrient-limiting, conditions. It is famously known that cancer cells favor the “Warburg effect”, i.e., the enhanced glycolysis or aerobic glycolysis, even when the ambient oxygen supply is sufficient. In addition, deregulated anabolism/catabolism of fatty acids and amino acids, especially glutamine, serine and glycine, have been identified to function as metabolic regulators in supporting cancer cell growth. Furthermore, extensive crosstalks are being revealed between the deregulated metabolic network and cancer cell signaling. These exciting advancements have inspired new strategies for treating various malignancies by targeting cancer metabolism. Here we review recent findings related to the regulation of glucose, fatty acid and amino acid metabolism, their crosstalk, and relevant cancer therapy strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  2. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  PubMed  CAS  Google Scholar 

  3. Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270

    PubMed  CAS  Google Scholar 

  4. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  PubMed  CAS  Google Scholar 

  5. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Wellen KE et al (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24(24):2784–2799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Gao P, Sun L, He X, Cao Y, Zhang H (2012) MicroRNAs and the Warburg effect: new players in an old arena. Curr Gene Ther 12(4):285–291

    Article  PubMed  CAS  Google Scholar 

  8. Kim JW et al (2004) Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol 24(13):5923–5936

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Mikawa T et al (2015) Dysregulated glycolysis as an oncogenic event. Cell Mol Life Sci 72(10):1881–1892

    Article  PubMed  CAS  Google Scholar 

  10. Li F et al (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25(14):6225–6234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Sun L et al (2015) cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res 25(4):429–444

    Article  PubMed  CAS  Google Scholar 

  12. Graven KK, Yu Q, Pan D, Roncarati JS, Farber HW (1999) Identification of an oxygen responsive enhancer element in the glyceraldehyde-3-phosphate dehydrogenase gene. Biochim Biophys Acta 1447(2–3):208–218

    Article  PubMed  CAS  Google Scholar 

  13. Zhang JY et al (2015) Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 12(1):10–22

    PubMed  PubMed Central  Google Scholar 

  14. Kress S et al (1998) Expression of hypoxia-inducible genes in tumor cells. J Cancer Res Clin Oncol 124(6):315–320

    Article  PubMed  CAS  Google Scholar 

  15. Huang D, Li C, Zhang H (2014) Hypoxia and cancer cell metabolism. Acta Biochim Biophys Sin 46(3):214–219

    Article  PubMed  CAS  Google Scholar 

  16. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7):2627–2633

    Article  PubMed  CAS  Google Scholar 

  17. Zhang C et al (2014) Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget 5(14):5535–5546

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mikawa T et al (2014) Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2. J Cell Biol 204(5):729–745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Bensaad K et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    Article  PubMed  CAS  Google Scholar 

  20. Yuan H, Su L, Chen WY (2013) The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther 6:1399–1416

    PubMed  CAS  PubMed Central  Google Scholar 

  21. German NJ, Haigis MC (2015) Sirtuins and the Metabolic Hurdles in Cancer. Curr Biol 25(13):R569–R583

    Article  PubMed  CAS  Google Scholar 

  22. Zwaans BM, Lombard DB (2014) Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis Model Mech 7(9):1023–1032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Hallows WC, Yu W, Denu JM (2012) Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J Biol Chem 287(6):3850–3858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Tsusaka T et al (2014) Deacetylation of phosphoglycerate mutase in its distinct central region by SIRT2 down-regulates its enzymatic activity. Genes Cells 19(10):766–777

    Article  PubMed  CAS  Google Scholar 

  25. Xu Y et al (2014) Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res 74(13):3630–3642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238

    Article  PubMed  CAS  Google Scholar 

  27. Sun L, He X, Cao Y, Gao P, Zhang H (2014) MicroRNAs and energy metabolism in cancer cells, chapter 4. In: Babashah S (ed) MicroRNAs: key regulators of oncogenesis. Springer, Switzerland, pp 84–95

    Google Scholar 

  28. Hung CL et al (2014) A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci USA 111(52):18697–18702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Vander Heiden MG et al (2011) Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol 76:325–334

    Article  PubMed  CAS  Google Scholar 

  30. Dang CV (2012) Links between metabolism and cancer. Genes Dev 26(9):877–890

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17(4):351–359

    Article  PubMed  CAS  Google Scholar 

  32. Chen B et al (2015) miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett 356(2 pt B):410–417

    Article  PubMed  CAS  Google Scholar 

  33. Rathmell JC et al (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23(20):7315–7328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18(4):1437–1446

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Morani F et al (2014) PTEN regulates plasma membrane expression of glucose transporter 1 and glucose uptake in thyroid cancer cells. J Mol Endocrinol 53(2):247–258

    Article  PubMed  CAS  Google Scholar 

  36. Goos JA et al (2015) Glucose transporter 1 (SLC2A1) and vascular endothelial growth factor A (VEGFA) predict survival after resection of colorectal cancer liver metastasis. Ann Surg. doi:10.1097/SLA.0000000000001109

    Google Scholar 

  37. Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10(5):611–618

    Article  PubMed  CAS  Google Scholar 

  38. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Kim HR, Roe JS, Lee JE, Cho EJ, Youn HD (2013) p53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun 437(2):225–231

    Article  PubMed  CAS  Google Scholar 

  40. Peschiaroli A et al (2013) miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene 32(6):797–802

    Article  PubMed  CAS  Google Scholar 

  41. Wang L et al (2014) Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep 8(5):1461–1474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Li Z, Li X, Wu S, Xue M, Chen W (2014) Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci 105(8):951–955

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Du S et al (2014) Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration. PLoS One 9(1):e85804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Long F, Cai X, Luo W, Chen L, Li K (2014) Role of aldolase A in osteosarcoma progression and metastasis: in vitro and in vivo evidence. Oncol Rep 32(5):2031–2037

    PubMed  CAS  Google Scholar 

  45. Sun Y, Long J, Zhou Y (2014) Angiopoietin-like 4 promotes melanoma cell invasion and survival through aldolase A. Oncol Lett 8(1):211–217

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Guo C, Liu S, Sun MZ (2013) Novel insight into the role of GAPDH playing in tumor. Clin Transl Oncol 15(3):167–172

    Article  PubMed  CAS  Google Scholar 

  47. Ramos D et al (2015) Deregulation of glyceraldehyde-3-phosphate dehydrogenase expression during tumor progression of human cutaneous melanoma. Anticancer Res 35(1):439–444

    PubMed  CAS  Google Scholar 

  48. Li T et al (2014) Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal. J Biol Chem 289(6):3775–3785

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Colell A et al (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129(5):983–997

    Article  PubMed  CAS  Google Scholar 

  50. Jiang X, Sun Q, Li H, Li K, Ren X (2014) The role of phosphoglycerate mutase 1 in tumor aerobic glycolysis and its potential therapeutic implications. Int J Cancer 135(9):1991–1996

    Article  PubMed  CAS  Google Scholar 

  51. Hitosugi T et al (2012) Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22(5):585–600

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Le A et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Liu X et al (2015) Effects of the suppression of lactate dehydrogenase A on the growth and invasion of human gastric cancer cells. Oncol Rep 33(1):157–162

    PubMed  CAS  Google Scholar 

  54. Li X, Zhao H, Zhou X, Song L (2015) Inhibition of lactate dehydrogenase A by microRNA-34a resensitizes colon cancer cells to 5-fluorouracil. Mol Med Rep 11(1):577–582

    PubMed  CAS  Google Scholar 

  55. McCleland ML et al (2012) An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res 72(22):5812–5823

    Article  PubMed  CAS  Google Scholar 

  56. Tambe Y, Hasebe M, Kim CJ, Yamamoto A, Inoue H (2015) The drs tumor suppressor regulates glucose metabolism via lactate dehydrogenase-B. Mol Carcinog. doi:10.1002/mc.22258

    PubMed  Google Scholar 

  57. Jiang P, Du W, Wu M (2014) Regulation of the pentose phosphate pathway in cancer. Protein Cell 5(8):592–602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 19(16):4309–4314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Jiang P et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13(3):310–316

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Hong X et al (2014) PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut 63(10):1635–1647

    Article  PubMed  CAS  Google Scholar 

  61. Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39(8):347–354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Patra KC et al (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2):213–228

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Yi W et al (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337(6097):975–980

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Anastasiou D et al (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334(6060):1278–1283

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Fukuda S et al (2015) Pyruvate kinase M2 modulates esophageal squamous cell carcinoma chemotherapy response by regulating the pentose phosphate pathway. Ann Surg Oncol. doi:10.1245/s10434-015-4522-3

    Google Scholar 

  66. DeBerardinis RJ (2011) Serine metabolism: some tumors take the road less traveled. Cell Metab 14(3):285–286

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Zhang H et al (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11(5):407–420

    Article  PubMed  CAS  Google Scholar 

  69. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  PubMed  CAS  Google Scholar 

  70. Ma X et al (2014) Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun 5:5212

    Article  PubMed  CAS  Google Scholar 

  71. Swierczynski J, Hebanowska A, Sledzinski T (2014) Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 20(9):2279–2303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18(2):153–161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Catalina-Rodriguez O et al (2012) The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget 3(10):1220–1235

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ozkaya AB, Ak H, Atay S, Aydin HH (2015) Targeting mitochondrial citrate transport in breast cancer cell lines. Anti-Cancer Agents Med Chem 15(3):374–381

    Article  CAS  Google Scholar 

  75. Wellen KE et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Zhou Y et al (2013) ATP citrate lyase mediates resistance of colorectal cancer cells to SN38. Mol Cancer Ther 12(12):2782–2791

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Szutowicz A, Kwiatkowski J, Angielski S (1979) Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. Br J Cancer 39(6):681–687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Beckner ME et al (2010) Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int J Cancer 126(10):2282–2295

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Wang Y et al (2012) Prognostic and therapeutic implications of increased ATP citrate lyase expression in human epithelial ovarian cancer. Oncol Rep 27(4):1156–1162

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Zaidi N, Swinnen JV, Smans K (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 72(15):3709–3714

    Article  PubMed  CAS  Google Scholar 

  81. Hanai J et al (2012) Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol 227(4):1709–1720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Zong H, Zhang Y, You Y, Cai T, Wang Y (2015) Decreased Warburg effect induced by ATP citrate lyase suppression inhibits tumor growth in pancreatic cancer. Med Oncol 32(3):85

    Article  PubMed  CAS  Google Scholar 

  83. Lin R et al (2013) Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 51(4):506–518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Lee JH et al (2015) ATP-citrate lyase regulates cellular senescence via an AMPK- and p53-dependent pathway. FEBS J 282(2):361–371

    Article  PubMed  CAS  Google Scholar 

  85. Bourbeau MP, Bartberger MD (2015) Recent advances in the development of acetyl-CoA carboxylase (ACC) inhibitors for the treatment of metabolic disease. J Med Chem 58(2):525–536

    Article  PubMed  CAS  Google Scholar 

  86. Shaw RJ et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101(10):3329–3335

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223(2):217–222

    Article  PubMed  CAS  Google Scholar 

  88. Laurent G et al (2013) SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 50(5):686–698

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777

    Article  PubMed  CAS  Google Scholar 

  90. Hopperton KE, Duncan RE, Bazinet RP, Archer MC (2014) Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity. Exp Cell Res 320(2):302–310

    Article  PubMed  CAS  Google Scholar 

  91. Knobloch M et al (2013) Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493(7431):226–230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Sun Y et al (2015) SREBP1 regulates tumorigenesis and prognosis of pancreatic cancer through targeting lipid metabolism. Tumour Biol 36(6):4133–4141

    Article  PubMed  CAS  Google Scholar 

  93. Elhanati S et al (2013) Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep 4(5):905–912

    Article  PubMed  CAS  Google Scholar 

  94. Lin L et al (2014) SIRT1 promotes endometrial tumor growth by targeting SREBP1 and lipogenesis. Oncol Rep 32(6):2831–2835

    PubMed  CAS  Google Scholar 

  95. Porstmann T et al (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8(3):224–236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Li S, Oh YT, Yue P, Khuri FR, Sun SY (2015) Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene. doi:10.1038/onc.2015.123

    Google Scholar 

  97. Lyssiotis CA, Cantley LC (2014) Acetate fuels the cancer engine. Cell 159(7):1492–1494

    Article  PubMed  CAS  Google Scholar 

  98. Comerford SA et al (2014) Acetate dependence of tumors. Cell 159(7):1591–1602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Mashimo T et al (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159(7):1603–1614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Maher EA et al (2012) Metabolism of [U-13 C] glucose in human brain tumors in vivo. NMR Biomed 25(11):1234–1244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Zhang X et al (2015) Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J Lipid Res 56(5):963–971

    Article  PubMed  CAS  Google Scholar 

  102. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109(9):1125–1131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  103. Shamma A et al (2009) Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 15(4):255–269

    Article  PubMed  CAS  Google Scholar 

  104. Freed-Pastor WA et al (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148(1–2):244–258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Yan S et al (2015) Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol 21(12):3492–3498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Liang YC et al (2005) Involvement of fatty acid-CoA ligase 4 in hepatocellular carcinoma growth: roles of cyclic AMP and p38 mitogen-activated protein kinase. World J Gastroenterol 11(17):2557–2563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Wu X et al (2013) Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer. PLoS One 8(10):e77060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. Huang D et al (2014) HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep 8(6):1930–1942

    Article  PubMed  CAS  Google Scholar 

  110. Hassanein M et al (2013) SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 19(3):560–570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Mates JM et al (2013) Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med 13(4):514–534

    Article  PubMed  CAS  Google Scholar 

  112. Gao P et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105(48):18782–18787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  114. Suzuki S et al (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 107(16):7461–7466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Son J et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496(7443):101–105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  116. Le A et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Faubert B et al (2014) Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha. Proc Natl Acad Sci USA 111(7):2554–2559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. DeBerardinis RJ et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49):19345–19350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  119. Yang C et al (2014) Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell 56(3):414–424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  120. Nikiforov MA et al (2002) A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol 22(16):5793–5800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  121. Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD (2014) Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 7(4):1248–1258

    Article  PubMed  CAS  Google Scholar 

  122. Phang JM, Liu W, Hancock CN, Fischer JW (2015) Proline metabolism and cancer: emerging links to glutamine and collagen. Curr Opin Clin Nutr Metab Care 18(1):71–77

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  123. Phang JM, Liu W, Hancock C, Christian KJ (2012) The proline regulatory axis and cancer. Front Oncol 2:60

    Article  PubMed  PubMed Central  Google Scholar 

  124. Togashi Y et al (2014) Frequent amplification of ORAOV1 gene in esophageal squamous cell cancer promotes an aggressive phenotype via proline metabolism and ROS production. Oncotarget 5(10):2962–2973

    Article  PubMed  PubMed Central  Google Scholar 

  125. Scott L, Lamb J, Smith S, Wheatley DN (2000) Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br J Cancer 83(6):800–810

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Kuo MT, Savaraj N, Feun LG (2010) Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget 1(4):246–251

    Article  PubMed  PubMed Central  Google Scholar 

  127. Feun LG, Kuo MT, Savaraj N (2015) Arginine deprivation in cancer therapy. Curr Opin Clin Nutr Metab Care 18(1):78–82

    Article  PubMed  CAS  Google Scholar 

  128. Moon JS et al (2011) Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J 433(1):225–233

    Article  PubMed  CAS  Google Scholar 

  129. Metallo CM et al (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384

    CAS  Google Scholar 

  130. Mullen AR et al (2012) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388

    CAS  Google Scholar 

  131. Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19(2):285–292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Chaneton B et al (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491(7424):458–462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  133. Ye J et al (2012) Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad Sci USA 109(18):6904–6909

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  134. Suzuki M et al (2015) Glycolytic flux controls d-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes. Proc Natl Acad Sci USA 112(17):E2217–E2224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  135. Gomes AP, Blenis J (2015) A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways. Curr Opin Biotechnol 34C:110–117

    Article  CAS  Google Scholar 

  136. Hu JW, Sun P, Zhang DX, Xiong WJ, Mi J (2014) Hexokinase 2 regulates G1/S checkpoint through CDK2 in cancer-associated fibroblasts. Cell Signal 26(10):2210–2216

    Article  PubMed  CAS  Google Scholar 

  137. Al Hasawi N, Alkandari MF, Luqmani YA (2014) Phosphofructokinase: a mediator of glycolytic flux in cancer progression. Crit Rev Oncol Hematol 92(3):312–321

    Article  PubMed  Google Scholar 

  138. Enzo E et al (2015) Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34(10):1349–1370

    Article  PubMed  CAS  Google Scholar 

  139. Sun Q et al (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA 108(10):4129–4134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  140. Vander Heiden MG et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499

    Article  PubMed  CAS  Google Scholar 

  141. Anastasiou D et al (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8(10):839–847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  142. Israelsen WJ et al (2013) PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155(2):397–409

    Article  PubMed  CAS  Google Scholar 

  143. Palsson-McDermott EM et al (2015) Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21(1):65–80

    Article  PubMed  CAS  Google Scholar 

  144. Dong T et al (2015) Pyruvate kinase M2 affects liver cancer cell behavior through up-regulation of HIF-1alpha and Bcl-xL in culture. Biomed Pharmacother 69:277–284

    Article  PubMed  CAS  Google Scholar 

  145. Yang P, Li Z, Fu R, Wu H, Li Z (2014) Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell Signal 26(9):1853–1862

    Article  PubMed  CAS  Google Scholar 

  146. Hu W et al (2015) Pyruvate kinase M2 prevents apoptosis via modulating Bim stability and associates with poor outcome in hepatocellular carcinoma. Oncotarget 6(9):6570–6583

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yang P et al (2015) Secreted pyruvate kinase M2 facilitates cell migration via PI3K/Akt and Wnt/beta-catenin pathway in colon cancer cells. Biochem Biophys Res Commun 459(2):327–332

    Article  PubMed  CAS  Google Scholar 

  148. Ritterson Lew C, Tolan DR (2012) Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism. J Biol Chem 287(51):42554–42563

    Article  PubMed  CAS  Google Scholar 

  149. Caspi M et al (2014) Aldolase positively regulates of the canonical Wnt signaling pathway. Mol Cancer 13:164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Fu QF et al (2015) Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. J Hematol Oncol 8(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12(11):829–846

    Article  PubMed  CAS  Google Scholar 

  152. Liu Y et al (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11(8):1672–1682

    Article  PubMed  CAS  Google Scholar 

  153. Zhan T, Digel M, Kuch EM, Stremmel W, Fullekrug J (2011) Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J Cell Biochem 112(3):849–859

    Article  PubMed  CAS  Google Scholar 

  154. Klippel S et al (2012) Methyljasmonate displays in vitro and in vivo activity against multiple myeloma cells. Br J Haematol 159(3):340–351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  155. Clem BF et al (2013) Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther 12(8):1461–1470

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  156. Zhang D et al (2014) 2-Deoxy-d-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett 355(2):176–183

    Article  PubMed  CAS  Google Scholar 

  157. Hanai JI, Doro N, Seth P, Sukhatme VP (2013) ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death Dis 4:e696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  158. Pandey PR, Liu W, Xing F, Fukuda K, Watabe K (2012) Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Pat Anti Cancer Drug Discov 7(2):185–197

    Article  CAS  Google Scholar 

  159. Fako VE, Wu X, Pflug B, Liu JY, Zhang JT (2015) Repositioning proton pump inhibitors as anticancer drugs by targeting the thioesterase domain of human fatty acid synthase. J Med Chem 58(2):778–784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  160. Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11(1):9–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  161. Wang JB et al (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18(3):207–219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  162. Korangath P et al (2015) Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin Cancer Res 21(14):3263–3273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  163. Wang Q et al (2015) Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 236(3):278–289

    Article  PubMed  CAS  Google Scholar 

  164. Jain M et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6084):1040–1044

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  165. Schwartz L et al (2013) Tumor regression with a combination of drugs interfering with the tumor metabolism: efficacy of hydroxycitrate, lipoic acid and capsaicin. Invest New Drugs 31(2):256–264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Basic Key Research Program of China (2014CB910600 and 2012CB910104), National Natural Science Foundation of China (31171358, 31371429, 81372215, 81572714 and 31301069), Specialized Research Fund for the Doctoral Program of Higher Education of China (20133402110020, 20133402120008), the Fundamental Research Funds for the Central Universities of China (WK2070000065, WK2060190018, WK2070000034), Anhui Provincial Natural Science Foundation (1408085MC42), and the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (CX2070000104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoyong Li or Huafeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell. Mol. Life Sci. 73, 377–392 (2016). https://doi.org/10.1007/s00018-015-2070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2070-4

Keywords

Navigation