Skip to main content

Advertisement

Log in

Evaluation of the role of c-Src and ERK in TCDD-dependent release from contact-inhibition in WB-F344 cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) is the most potent tumor promoter ever tested in rodents. Although it is known that most of the effects of TCDD are mediated by binding to the aryl hydrocarbon receptor (AhR), the mechanisms leading to tumor promotion remain to be elucidated. Loss of contact-inhibition is one characteristic hallmark in tumorigenesis. In WB-F344 cells, TCDD induces a release from contact-inhibition which is manifested by a twofold increase in DNA-synthesis and cell number when TCDD (1 nmol L−1) is given to confluent cells. Because TCDD leads to phosphorylation of the epidermal growth factor receptor and an increase in c-Src-activation in WB-F344 cells, we investigated the functional relevance of this observation. Pharmacological inhibition of c-Src using PP1 (10 μmol L−1) or genistein (10 μmol L−1) did not prevent TCDD-dependent release from contact-inhibition. In accordance, elevation of cyclin A—a previously identified target of TCDD and marker of S-phase entry—was not reduced in the presence of PP1 or genistein. Western blot analysis revealed that phosphorylation of the EGF-receptor downstream target ERK was not induced in response to TCDD. Furthermore, TCDD-dependent increase in DNA-synthesis was not inhibited by the MEK1/2 inhibitor U0126 (10 μmol L−1). Our data show that neither c-Src-activation, nor ERK-activation are required for TCDD-dependent release from contact-inhibition arguing against a functional role of EGF-receptor activation in response to TCDD in WB-F344 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott BD, Probst MR, Perdew GH, Buckalew AR (1998) AH receptor, ARNT, glucocorticoid receptor, EGF receptor, EGF, TGFα, TGFβ1, TGFβ2, and TGFβ3 expression in human embryonic palate, and effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Teratology 58:30–43

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Ishida F, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595

    CAS  PubMed  Google Scholar 

  • Bertazzi PA, Zochetti C, Guercilena S, Consonni D, Tironi A, Landi MT, Pesatori AC (1997) Dioxin exposure and cancer risk: a 15-year mortality study after the “Seveso-accident”. Epidemiology 8:646–652

    Article  CAS  PubMed  Google Scholar 

  • Bombick D, Matsumura F (1987) 2,3,7,8-Tetrachlorodibenzo-p-dioxin causes elevation of the levels of the protein tyrosine kinase pp60src. J Biochem Toxicol 2:141–154

    CAS  PubMed  Google Scholar 

  • Choi EJ, Toscano DG, Ryan JA, Riedel N, Toscano Jr WA (1991) Dioxin induces transforming growth factor-alpha in human keratinocytes. J Biol Chem 266:9591–9597

    CAS  PubMed  Google Scholar 

  • Chramostova K, Vondracek J, Sindlerova L, Vojtesek B, Kozubik A, Machala M (2004) Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells. Toxicol Appl Pharmacol 196:136–148

    Article  CAS  PubMed  Google Scholar 

  • Davis JW, Burdick AD, Lauer FT, Burchiel SW (2003) The aryl hydrocarbon receptor antagonist, 3′methoxy-4′-nitroflavone, attenuates 2,3,7,8-tetrachlorodibenzo-p-dioxin-dependent regulation of growth factor signaling and apoptosis in the MCF-10A cell line. Toxicol Appl Pharmacol 188:42–49

    Article  CAS  PubMed  Google Scholar 

  • Dietrich C, Faust D, Budt S, Moskwa M, Kunz A, Bock K-W, Oesch F (2002) TCDD-dependent release from contact-inhibition in WB-F344 cells: involvement of cyclin A. Toxicol Appl Pharmacol 183:117–126

    Article  CAS  PubMed  Google Scholar 

  • Dietrich C, Faust D, Moskwa M, Kunz A, Bock K-W, Oesch F (2003) TCDD-dependent downregulation of γ-catenin in rat liver epithelial cells (WB-F344). Int J Cancer 103:435–439

    Article  CAS  PubMed  Google Scholar 

  • Enan E, Matsumura F (1996) Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Biochem Pharmacol 52:1599–1612

    Article  CAS  PubMed  Google Scholar 

  • Enan E, El-Sabeawy F, Scott M, Overstreet J, Lasley B (1998a) Alterations in the growth factor signal transduction pathways and modulators of the cell cycle in endocervival cells from macaques exposed to TCDD. Toxicol Appl Pharmacol 151:283–293

    Article  CAS  PubMed  Google Scholar 

  • Enan E, Dunlap DY, Matsumura F (1998b) Use of c-Src and c-Fos knockout mice for the studies on the role of c-Src kinase signaling in the expression of toxicity of TCDD. J Biochem Mol Toxicol 12:263–274

    Article  CAS  PubMed  Google Scholar 

  • Erpel T, Courtneidge S (1995) Src family protein tyrosine kinases and cellular signal transduction pathways. Curr Opin Cell Biol 7:176–182

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Salguero P, Pineau T, Hilbert D, McPhail T, Lee S, Kimura S, Nebert D, Rudikoff S, Ward J, Gonzalez F (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxin binding Ah receptor. Science 268:722–726

    CAS  PubMed  Google Scholar 

  • Gaido KW, Maness SC, Leonard LS, Greenlee WF (1992) Tetrachlorodibenzo-p-dioxin-dependent regulation of transforming growth factor-alpha and -beta 2 expression involves both transcriptional and post-transcriptional control. J Biol Chem 267:24591–24595

    CAS  PubMed  Google Scholar 

  • Gradin K, Whitelaw ML, Toftgard R, Poellinger L, Berghard A (1994) A tyrosine kinase-dependent pathway regulates ligand-dependent activation of the dioxin receptor in human keratinocytes. J Biol Chem 269:23800–23807

    CAS  PubMed  Google Scholar 

  • Hanke JH, Gardner JP, Dow RL, Changelian PS, Brisette WH, Weringer EJ, Pollok BA, Connelly PA (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. J Biol Chem 271:695–701

    Article  CAS  PubMed  Google Scholar 

  • Hebert C, Cao Q-L, Birnbaum L (1990) Inhibition of high-density growth arrest in human squamous carcinoma cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Carcinogenesis 11:1335–1342

    CAS  PubMed  Google Scholar 

  • Hölper P, Faust D, Oesch F, Dietrich C (2004) TGF-β1 is not involved in TCDD-dependent release from contact-inhibition in WB-F344 cells. Arch Toxicol, in press

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1997). Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC Monographs on the evaluation of carcinogenic risks to humans, vol. 69, IARC Press, Lyon, France

  • Köhle C, Gschaidmeier H, Lauth D, Topell S, Zitzer H, Bock K-W (1999) TCDD-mediated membrane translocation of c-src protein kinase in liver WB-F344 cells. Arch Toxicol 73:152–158

    Article  PubMed  Google Scholar 

  • Kwon MJ, Jeong KS, Choi EJ, Lee BH (2003) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of mitogen-activated protein kinase signaling pathway in jurkat T cells. Pharmacol Toxicol 93:186–190

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lemaire G, Delescluse C, Pralavorio M, Ledirac N, Lesca P, Rahmani R (2004) The role of protein tyrosine kinases in Cyp1A1 induction by omeprazole and thiabendazole in rat hepatocytes. Life Sci 74:2265–2278

    Article  CAS  PubMed  Google Scholar 

  • Madhukar BV, Ebner K, Matsumura F, Bombick DW, Brewster DW, Kawamoto T (1988) 2,3,7,8-Tetrachlorodibenzo-p-dioxin causes an increase in protein kinases associated with epidermal growth factor receptor in the hepatic plasma membrane. J Biochem Toxicol 3:261–277

    CAS  PubMed  Google Scholar 

  • Matsumura F, Enan E, Dunlap DY, Pinkerton KE, Peake J (1997) Altered in vivo toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in c-Src deficient mice. Biochem Pharmacol 53:1397–1404

    Article  CAS  PubMed  Google Scholar 

  • Münzel P, Bock-Hennig B, Schieback S, Gschaidmeier H, Beck-Gschaidmeier S, Bock K-W (1996) Growth modulation of hepatocytes and rat liver epithelial cells (WB-F344) by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Carcinogenesis 17:197–202

    PubMed  Google Scholar 

  • Park S, Henry E, Gasiewicz TA (2000) Regulation of DNA binding activity of the ligand-activated aryl hydrocarbon receptor by tyrosine phosphorylation. Arch Biochem Biophys 381:302–312

    Article  CAS  PubMed  Google Scholar 

  • Pitot HC, Goldsworthy T, Campell HA, Poland A (1980) Quantitative evaluation of the promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin of hepatocarcinogenesis from diethylnitrosamine. Cancer Res 40:3616–3620

    CAS  PubMed  Google Scholar 

  • Puga A, Xia Y, Elferink C (2002) Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem Biol Interact 141:117–130

    Article  CAS  PubMed  Google Scholar 

  • Rowlands JC, Gustafsson J-A (1997) Aryl hydrocarbon receptor-mediated signal transduction. Crit Rev Toxicol 27:109–134

    CAS  PubMed  Google Scholar 

  • Schwarz M, Buchmann A, Stinchcombe S, Kalkuhl A, Bock K-W (2000) Ah receptor ligands and tumor promotion: survival of neoplastic cells. Toxicol Lett 112/113:69–77

    Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia A, Gartner FH, Provenzano MD, Fujimoto EK, Hoeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    CAS  PubMed  Google Scholar 

  • Sutter TR, Greenlee WF (1992) Classification of the Ah gene battery. Chemosphere 25:223–226

    Article  CAS  Google Scholar 

  • Tan Z, Chang X, Puga A, Xia Y (2002) Activation of mitogen-activated protein kinases (MAPKs) by aromatic hydrocarbons: role in the regulation of aryl hydrocarbon receptor (AHR9 function). Biochem Pharmacol 64:771–780

    Article  CAS  PubMed  Google Scholar 

  • Tolwinsky N, Shapiro P, Goueli S, Ahn N (1999) Nuclear localization of mitogen-activated protein kinase kinase 1 (MKK1) is promoted by serum stimulation and G2-M progression. J Biol Chem 274:6168–6174

    Article  PubMed  Google Scholar 

  • Tsao M-S, Smith J, Nelson K, Grisham J (1984) A diploid epithelial cell line from normal adult rat liver with phenotypic properties of oval cells. Exp Cell Res 154:38–52

    CAS  PubMed  Google Scholar 

  • Whitlock JP (1993) Mechanistic aspects of dioxin action. Chem Res Toxicol 6:754–763

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K.-W. Bock for kindly providing us with the WB-F344 cells, Sandra Niemann for excellent technical assistance, and Carsten Weiss for fruitful discussions. This work is part of the M.D. thesis of P.H. and was supported by the grant Di 793/1-3 by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoelper, P., Faust, D., Oesch, F. et al. Evaluation of the role of c-Src and ERK in TCDD-dependent release from contact-inhibition in WB-F344 cells. Arch Toxicol 79, 201–207 (2005). https://doi.org/10.1007/s00204-004-0624-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0624-6

Keywords

Navigation