Skip to main content
Log in

Functional reactivity of central cholinergic systems following desipramine treatments and sleep deprivation

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study examined the effects of acute and chronic desipramine, 24-h total sleep deprivation (TSD) and 96-h REM sleep deprivation (REMSD) on physostigmine-induced hypothermia, analgesia and behaviour. The effects of acute and chronic desipramine treatment on oxotremorine-induced hypothermia were also examined. Intraperitoneal administration of physostigmine (0.5 mg/kg i.p.) induced hypothermia, analgesia, purposeless chewing movements (chewing) and head tremors. While atropine given in a low dose (1.0 mg/kg i.p. 15 min prior) did not antagonize the hypothermia, chewing and head tremor associated with physostigmine (0.5 mg/kg i.p.), a higher dose of atropine (10 mg/kg i.p. 15 min prior) decreased physostigmine-induced hypothermia, chewing and head tremor behaviour.

Chronic (10 or 20 mg/kg i.p. daily for 10 days and withdrawn 24 h prior, chronic DMI) and acute (10 mg/kg, i.p. + 60 min prior, acute DMI) desipramine treatments abolished physostigmine (0.5 mg/kg i.p.)-induced hypothermia compared with saline pretreatment. Interestingly atropine (1 mg/kg i.p. 15 min prior) reversed the inhibitory effect of chronic DMI on hypothermia induced by physostigmine. Acute but not chronic DMI decreased physostigmine-induced chewing and head tremor behaviour. Atropine (1 mg/kg i.p. 15 min prior) increased the inhibitory action of acute DMI on physostigmine-induced chewing behaviour. Acute DMI (10 mg/kg i.p.) decreased oxotremorine (0.1 mg/kg i.p.)-induced hypothermia, while chronic DMI increased the hypothermic effect of oxotremorine. TSD and REMSD did not alter physostigmine (0.5 mg/kg i.p.)-induced hypothermia; however, REMSD and stress decreased physostigmine-induced analgesia and chewing.

It is suggested that chronic desipramine treatment decreased physostigmine-induced hypothermia by causing hypersensitivity of pre-synaptic muscarinic receptors, whereas acute desipramine decreased the sensitivity of post-synaptic muscarinic receptors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Batra S, Bjorklund A (1986) Binding affinities of antidepressant tricyclic drugs to muscarinic cholinergic receptors in human parotid gland. Psychopharmacology 90:1–4

    CAS  PubMed  Google Scholar 

  • Brunello N, Barbaccia ML, Chuang DM, Costa E (1982) Down regulation of beta-adrenergic receptors following repeated injections of desmethylimipramine. Permissive role of serotonergic axons. Neuropharmacology 21:1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Buckett WR (1979) Peripheral stimulation in mice induces short-duration analgesia preventable by naloxone. Eur J Pharmacol 58:169–178

    CAS  PubMed  Google Scholar 

  • Carroll BJ, Frazer A, Schless A, Mendels J (1973) Cholinergic reversal of manic symptoms. Lancet 1973:427–428

    Google Scholar 

  • Dill RE (1977) Induction and measurement of tremor and other dyskinesias. In: Myers RD (ed) Methods in psychobiology. Academic Press, New York, pp 241–257

  • Dilsaver SC (1986) Cholinergic mechanisms in depression. Brain Res Rev 11:285–316

    CAS  Google Scholar 

  • Elsenga S, Van Den Hoofdakker RH (1987) Response to total sleep deprivation and clomipramine in endogenous depression. J Psychiatr Res 21:157–161

    Article  Google Scholar 

  • Friedman MJ, Jaffe JH (1969) A central hypothermic response to pilocarpine in the mouse. J Pharmacol Exp Ther 167:34–44

    CAS  PubMed  Google Scholar 

  • Goldman ME, Erickson CK (1983) Effects of acute and chronic administration of antidepressant drugs on the central cholinergic nervous system: comparison with anticholinergic drugs. Neuropharmacology 22:1215–1222

    CAS  PubMed  Google Scholar 

  • Goyal RK (1989) Muscarinic receptor subtypes physiology and clinical implication. N Engl J Med 321:1022–1029

    CAS  PubMed  Google Scholar 

  • Heiser JF, Wilbert DE (1974) Reversal of delirium induced by tricyclic antidepressant drugs with physostigmine. Am J Psychiatry 131:1275–1277

    CAS  PubMed  Google Scholar 

  • Hicks RA, Okuda A, Thomsen D (1977) Depriving rats of REM sleep: the identification of a methodological problem. Am J Physiol 90:95–102

    CAS  Google Scholar 

  • Hochli D, Riemann D, Zulley J, Berger M (1986) Is there a relationship between response to total sleep deprivation and efficacy of clomipramine treatment in depressed patients. Acta Psychiatr Scand 74:190–192

    CAS  PubMed  Google Scholar 

  • Janowsky DS, el-Yousef K, Davis JM, Sekerke HJ (1973) Parasympathetic suppression of manic symptoms by physostigmine. Arch Gen Psychiatry 28:542–547

    Google Scholar 

  • Jones RSG (1980) Enhancement of 5-hydroxyptamine-induced behavioural effects following chronic administration of antidepressant drugs. Psychopharmacology 69:307–311

    CAS  PubMed  Google Scholar 

  • Karczmar AG (1967) Pharmacologic, toxicologic and therapeutic properties of anticholinesterase agents. In: Roots WS, Hofmann FG (eds) Physiological pharmacology. Academic Press, New York, pp 167–322

  • Kilbinger H (1984) Pre-synaptic muscarinic receptors modulating acetylcholine release. Trends Pharmacol Sci 5:103–105

    CAS  Google Scholar 

  • Lomax P, Foster RS, Kirkpatrick WE (1969) Cholinergic and adrenergic interactions in the thermoregulatory centres of the rat. Brain Res 15:431–438

    CAS  PubMed  Google Scholar 

  • Mendelson WB, Guthrie RD, Frederick G, Wyatt RJ (1974) The flowerpot technique of rapid eye movement (REM) sleep deprivation. Pharmacol Biochem Behav 2:553–556

    CAS  PubMed  Google Scholar 

  • Mogilnicka E, Wedzony K, Klimek V, Czyrak A (1986) Desipramine induces yawning behaviour in rats. Neuropharmacology 25:783–786

    CAS  PubMed  Google Scholar 

  • Overstreet DH, Kozar MP, Lynch GS (1973) Reduced hypothermic effects of cholinomimetic agents following chronic anticholinesterase treatment. Neuropharmacology 12:1017–1032

    CAS  PubMed  Google Scholar 

  • Rehavi M, Maayani S, Sokolovsky M (1977) Tricyclic antidepressants as antimuscarinic drugs: in-vivo and in-vitro studies. Biochem Pharmacol 26:1559–1567

    CAS  PubMed  Google Scholar 

  • Risch S (1982) β-endorphin hyper-secretion in depression; possible cholinergic mechanisms. Biol Psychiatry 17:1071–1079

    CAS  PubMed  Google Scholar 

  • Rupreht J, Dzoljic MR (1983) The role of a noradrenergic system in the antinociceptive effects of 4-aminopyridine in the rat. Arch Int Pharmacodyn Ther 265:203–210

    CAS  PubMed  Google Scholar 

  • Severson JA, Anderson B (1986) Chronic antidepressant treatment and mouse brain 3H-Imipramine binding. J Neurosci Res 16:429–438

    CAS  PubMed  Google Scholar 

  • Slovis TL, Ott JE, Teitebaum DT, Lipscomb W (1971) Physostigmine therapy in acute tricyclic antidepressant poisoning. Clin Toxicol 4:451–459

    CAS  PubMed  Google Scholar 

  • Snyder BD, Blonde L, McWhirter WR (1974) Reversal of amitryptiline intoxication by physostigmine. J Am Med Assoc 230:1433–1434

    Article  CAS  Google Scholar 

  • Spencer PS (1965) Activity of centrally acting and other drugs against tremor and hypothermia induced in mice by tremorine. Br J Pharmacol 25:442–455

    CAS  PubMed  Google Scholar 

  • Sternthal HS, Webb WB (1986) Sleep deprivation of rats by punitive and non-punitive procedures. Physiol Behav 37:249–252

    CAS  PubMed  Google Scholar 

  • Tsuchiya K, Toru M, Kobayashi T (1969) Sleep deprivation: changes of monoamine and acetylcholine. Life Sci 8:867–873

    CAS  PubMed  Google Scholar 

  • Ukponmwan OE, Ruphret J, Dzoljic MR (1986) An analgesic effect of enkephalinase inhibition is modulated by monoamine oxidase B and REM sleep deprivation. Naunyn-Schmiedebergs Arch Pharmacol 322:376–379

    Google Scholar 

  • Vogel GW, Vogel F, McAbee RS, Thurmond AJ (1980) Improvement of depression by REM sleep deprivation: new findings and theory. Arch Gen Psychiatry 37:247–253

    CAS  PubMed  Google Scholar 

  • Wessler I (1992) Acetylcholine at motor nerves storage, release and pre-synaptic modulation by autoreceptors and adrenoceptor. Int Rev Neurobiol 34:283–284

    CAS  PubMed  Google Scholar 

  • Wirz-Justice A, Puhringer W, Hole G (1979) Response to sleep deprivation as a predictor of therapeutic result antidepressant drugs. Am J Psychiatry 136:1222–1223

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Desipramine was donated by Novartis BV (Arnhem, The Netherlands). We thank Mrs. M. Sanusi for her secretarial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Ukponmwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugaiah, K.D., Ukponmwan, O.E. Functional reactivity of central cholinergic systems following desipramine treatments and sleep deprivation. Naunyn-Schmiedeberg's Arch Pharmacol 368, 294–300 (2003). https://doi.org/10.1007/s00210-003-0784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0784-6

Keywords

Navigation