Skip to main content

Advertisement

Log in

Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2)

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The organic cation transporter 2 (OCT2) provides an important pathway for the uptake of cationic compounds in the kidney, which is the essential step in their elimination from the organism. Although many drugs have been identified which interact with human OCT2, structural elements required for an interaction with OCT2 are not well defined. To address this issue, HEK293 cells stably expressing human OCT2 were generated. IC50 values of commonly used drugs for inhibition of [3H]MPP+ uptake were determined and correlated with physicochemical descriptors. We found only a significant correlation between the topological polar surface area (TPSA) and IC50 values (r = 0.71, p < 0.0001). Structural alignment of most potent inhibitor drugs of OCT2-mediated MPP+ uptake was used to construct a two-point pharmacophore consisting of an ion-pair interaction site and a hydrophobic aromatic site separated by 5.0 Å. Taken together, our data identify structural determinants for inhibitor interactions with OCT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Affrime M, Gupta S, Banfield C, Cohen A (2002) A pharmacokinetic profile of desloratadine in healthy adults, including elderly. Clin Pharmacokinet 41(Suppl 1):13–19

    Article  PubMed  CAS  Google Scholar 

  • Ahlin G, Karlsson J, Pedersen JM, Gustavsson L, Larsson R, Matsson P, Norinder U, Bergstrom CA, Artursson P (2008) Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J Med Chem 51:5932–5942

    Article  PubMed  CAS  Google Scholar 

  • Barendt WM, Wright SH (2002) The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J Biol Chem 277:22491–22496

    Article  PubMed  CAS  Google Scholar 

  • Bednarczyk D, Ekins S, Wikel JH, Wright SH (2003) Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol 63:489–498

    Article  PubMed  CAS  Google Scholar 

  • Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R, Lai L (2007) Computation of octanol–water partition coefficients by guiding an additive model with knowledge. J Chem Inf Model 47:2140–2148

    Article  PubMed  CAS  Google Scholar 

  • Clark DE (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J Pharm Sci 88:815–821

    Article  PubMed  CAS  Google Scholar 

  • Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717

    Article  PubMed  CAS  Google Scholar 

  • Ferrara P, Apostolakis J, Caflisch A (2002) Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 46:24–33

    Article  PubMed  CAS  Google Scholar 

  • Furlanut M, Franceschi L, Pasqual E, Bacchetti S, Poz D, Giorda G, Cagol P (2007) Tamoxifen and its main metabolites serum and tissue concentrations in breast cancer women. Ther Drug Monit 29:349–352

    Article  PubMed  CAS  Google Scholar 

  • Hardy BG, Schentag JJ (1988) Lack of effect of cimetidine on the metabolism of quinidine: effect on renal clearance. Int J Clin Pharmacol Ther Toxicol 26:388–391

    PubMed  CAS  Google Scholar 

  • Hayer-Zillgen M, Bruss M, Bonisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836

    Article  PubMed  CAS  Google Scholar 

  • Kakehi M, Koyabu N, Nakamura T, Uchiumi T, Kuwano M, Ohtani H, Sawada Y (2002) Functional characterization of mouse cation transporter mOCT2 compared with mOCT1. Biochem Biophys Res Commun 296:644–650

    Article  PubMed  CAS  Google Scholar 

  • Kim MK, Shim CK (2006) The transport of organic cations in the small intestine: current knowledge and emerging concepts. Arch Pharm Res 29:605–616

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, Inui K (2005a) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–386

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Okuda M, Inui K (2005b) Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm Res 22:255–259

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Maeda K, Sugiyama Y (2008) Recent progresses in the experimental methods and evaluation strategies of transporter functions for the prediction of the pharmacokinetics in humans. Naunyn Schmiedebergs Arch Pharmacol 377:617–628

    Article  PubMed  CAS  Google Scholar 

  • Leabman MK, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE, DeYoung J, Taylor T, Clark AG, Herskowitz I, Giacomini KM (2002) Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics 12:395–405

    Article  PubMed  CAS  Google Scholar 

  • Marchetti S, Mazzanti R, Beijnen JH, Schellens JH (2007) Concise review: clinical relevance of drug–drug and herb–drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist 12:927–941

    Article  PubMed  Google Scholar 

  • Moaddel R, Patel S, Jozwiak K, Yamaguchi R, Ho PC, Wainer IW (2005) Enantioselective binding to the human organic cation transporter-1 (hOCT1) determined using an immobilized hOCT1 liquid chromatographic stationary phase. Chirality 17:501–506

    Article  PubMed  CAS  Google Scholar 

  • Moaddel R, Ravichandran S, Bighi F, Yamaguchi R, Wainer IW (2007) Pharmacophore modelling of stereoselective binding to the human organic cation transporter (hOCT1). Br J Pharmacol 151:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874

    PubMed  CAS  Google Scholar 

  • Nies AT, Herrmann E, Brom M, Keppler D (2008) Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn Schmiedebergs Arch Pharmacol 376:449–461

    Article  PubMed  CAS  Google Scholar 

  • Okuda M, Saito H, Urakami Y, Takano M, Inui K (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224:500–507

    Article  PubMed  CAS  Google Scholar 

  • Palm K, Stenberg P, Luthman K, Artursson P (1997) Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 14:568–571

    Article  PubMed  CAS  Google Scholar 

  • Pietig G, Mehrens T, Hirsch JR, Cetinkaya I, Piechota H, Schlatter E (2001) Properties and regulation of organic cation transport in freshly isolated human proximal tubules. J Biol Chem 276:33741–33746

    Article  PubMed  CAS  Google Scholar 

  • Regenthal R, Krueger M, Koeppel C, Preiss R (1999) Drug levels: therapeutic and toxic serum/plasma concentrations of common drugs. J Clin Monit Comput 15:529–544

    Article  PubMed  CAS  Google Scholar 

  • Schömig E, Babin-Ebell J, Russ H (1993) 1,1′-diethyl-2,2′-cyanine (decynium22) potently inhibits the renal transport of organic cations. Naunyn Schmiedebergs Arch Pharmacol 347:379–383

    Article  PubMed  Google Scholar 

  • Schömig E, Lazar A, Gründemann D (2006) Extraneuronal monoamine transporter and organic cation transporters 1 and 2: a review of transport efficiency. Handb Exp Pharmacol 175:151–180

    Article  PubMed  Google Scholar 

  • Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo K, Ieiri I (2007) Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet 52:117–122

    Article  PubMed  CAS  Google Scholar 

  • Sirtori CR, Franceschini G, Galli-Kienle M, Cighetti G, Galli G, Bondioli A, Conti F (1978) Disposition of metformin (N,N-dimethylbiguanide) in man. Clin Pharmacol Ther 24:683–693

    PubMed  CAS  Google Scholar 

  • Solbach TF, Paulus B, Weyand M, Eschenhagen T, Zolk O, Fromm MF (2008) ATP-binding cassette transporters in human heart failure. Naunyn Schmiedebergs Arch Pharmacol 377:231–243

    Article  PubMed  CAS  Google Scholar 

  • Somogyi A, Stockley C, Keal J, Rolan P, Bochner F (1987) Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 23:545–551

    PubMed  CAS  Google Scholar 

  • Suhre WM, Ekins S, Chang C, Swaan PW, Wright SH (2005) Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol 67:1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Tetko IV, Tanchuk VY, Kasheva TN, Villa AE (2001) Estimation of aqueous solubility of chemical compounds using E-state indices. J Chem Inf Comput Sci 41:1488–1493

    PubMed  CAS  Google Scholar 

  • Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory—design and description. J Comput Aided Mol Des 19:453–463

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ (1997) Renal transporters for organic anions and organic cations. Structural requirements for substrates. J Membr Biol 158:95–107

    Article  PubMed  CAS  Google Scholar 

  • Urakami Y, Okuda M, Masuda S, Saito H, Inui KI (1998) Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther 287:800–805

    PubMed  CAS  Google Scholar 

  • Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996

    CAS  Google Scholar 

  • Wilson JF (2003) Survey of reference ranges and clinical measurements for psychoactive drugs in serum. Ther Drug Monit 25:243–247

    Article  PubMed  Google Scholar 

  • Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169

    Article  PubMed  CAS  Google Scholar 

  • Wright SH (2005) Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol Appl Pharmacol 204:309–319

    Article  PubMed  CAS  Google Scholar 

  • Wright SH, Dantzler WH (2004) Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 84:987–1049

    Article  PubMed  CAS  Google Scholar 

  • Yin OQ, Tomlinson B, Chow MS (2006) Variability in renal clearance of substrates for renal transporters in Chinese subjects. J Clin Pharmacol 46:157–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Johannes und Frieda Marohn-Stiftung (JK, OZ), the Deutsche Forschungsgemeinschaft (Fr 1298/5-1), the Deutsche Krebshilfe (JK, grant 107854) and the Doktor Robert Pfleger-Stiftung (OZ). We thank Beate Endreß for providing expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Zolk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolk, O., Solbach, T.F., König, J. et al. Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn-Schmied Arch Pharmacol 379, 337–348 (2009). https://doi.org/10.1007/s00210-008-0369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0369-5

Keywords

Navigation