Skip to main content

Advertisement

Log in

Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps

  • REVIEW
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Adenylyl cyclases are a ubiquitous family of enzymes and are critical regulators of metabolic and cardiovascular function. Multiple isoforms of the enzyme are expressed in a range of tissues. However, for many processes, the adenylyl cyclase isoforms have been thought of as essentially interchangeable, with their impact more dependent on their common actions to increase intracellular cyclic adenosine monophosphate content regardless of the isoform involved. It has long been appreciated that each subfamily of isoforms demonstrate a specific pattern of “upstream” regulation, i.e., specific patterns of ion dependence (e.g., calcium-dependence) and specific patterns of regulation by kinases (protein kinase A (PKA), protein kinase C (PKC), raf). However, more recent studies have suggested that adenylyl cyclase isoform-selective patterns of signaling are a wide-spread phenomenon. The determinants of these selective signaling patterns relate to a number of factors, including: (1) selective coupling of specific adenylyl cyclase isoforms with specific G protein-coupled receptors, (2) localization of specific adenylyl cyclase isoforms in defined structural domains (AKAP complexes, caveolin/lipid rafts), and (3) selective coupling of adenylyl cyclase isoforms with specific downstream signaling cascades important in regulation of cell growth and contractility. The importance of isoform-specific regulation has now been demonstrated both in mouse models as well as in humans. Adenylyl cyclase has not been viewed as a useful target for therapeutic regulation, given the ubiquitous expression of the enzyme and the perceived high risk of off-target effects. Understanding which isoforms of adenylyl cyclase mediate distinct cellular effects would bring new significance to the development of isoform-specific ligands to regulate discrete cellular actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bauman AL, Soughayer J, Nguyen BT, Willoughby D, Carnegie GK, Wong W, Hoshi N, Langeberg LK, Cooper DM, Dessauer CW, Scott JD (2006) Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. Mol Cel 23:925–931

    Article  CAS  Google Scholar 

  • Bayewitch ML, Avidor-Reiss T, Levy R, Pfeuffer T, Nevo I, Simonds WF, Vogel Z (1998) Inhibition of adenylyl cyclase isoforms V and VI by various Gbetagamma subunits. FASEB J: Official Publication Fed Am Soc Experiment Biol 12:1019–1025

    CAS  Google Scholar 

  • Bogard AS, Xu C, Ostrom RS (2011) Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains. J Pharmacol Experiment Therapeut 337:209–217

    Article  CAS  Google Scholar 

  • Bol GF, Hulster A, Pfeuffer T (1997) Adenylyl cyclase type II is stimulated by PKC via C-terminal phosphorylation. Biochim Biophys Acta 1358:307–313

    Article  PubMed  CAS  Google Scholar 

  • Cali JJ, Zwaagstra JC, Mons N, Cooper DM, Krupinski J (1994) Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biological Chem 269:12190–12195

    CAS  Google Scholar 

  • Chen J, Iyengar R (1993) Inhibition of cloned adenylyl cyclases by mutant-activated Gi-alpha and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. J Biol Chem 268:12253–12256

    PubMed  CAS  Google Scholar 

  • Chen Y, Harry A, Li J, Smit MJ, Bai X, Magnusson R, Pieroni JP, Weng G, Iyengar R (1997) Adenylyl cyclase 6 is selectively regulated by protein kinase A phosphorylation in a region involved in Galphas stimulation. Proc Nat Acad Sci U S A 94:14100–14104

    Article  CAS  Google Scholar 

  • Choi EJ, Xia Z, Storm DR (1992) Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochem 31:6492–6498

    Article  CAS  Google Scholar 

  • Cooper DM (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375:517–529

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM, Mons N, Karpen JW (1995) Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374:421–424

    Article  PubMed  CAS  Google Scholar 

  • Crossthwaite AJ, Seebacher T, Masada N, Ciruela A, Dufraux K, Schultz JE, Cooper DM (2005) The cytosolic domains of Ca2 + −sensitive adenylyl cyclases dictate their targeting to plasma membrane lipid rafts. J Biol Chem 280:6380–6391

    Article  PubMed  CAS  Google Scholar 

  • Cumbay MG, Watts VJ (2004) Novel regulatory properties of human type 9 adenylate cyclase. J Pharmacol Exp Ther 310:108–115

    Article  PubMed  CAS  Google Scholar 

  • Dessauer CW (2009) Adenylyl cyclase—A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 76:935–941

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Gros R, Gray ID, Taussig R, Ferguson SS, Feldman RD (2004) Raf kinase activation of adenylyl cyclases: isoform-selective regulation. Mol Pharmacol 66:921–928

    PubMed  CAS  Google Scholar 

  • Efendiev R, Dessauer CW (2011) AKAPs and adenylyl cyclase in cardiovascular physiology and pathology. J Cardiovasc Pharmacol 58:339–344

    Google Scholar 

  • Efendiev R, Samelson BK, Nguyen BT, Phatarpekar PV, Baameur F, Scott JD, Dessauer CW (2010) AKAP79 interacts with multiple adenylyl cyclase (AC) isoforms and scaffolds AC5 and −6 to alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors. J Biol Chem 285:14450–14458

    Article  PubMed  CAS  Google Scholar 

  • Fagan KA, Mons N, Cooper DMF (1998) Dependence of the Ca2 + −inhibitable adenylyl cyclase of C6‚Äì2B glioma cells on capacitative Ca2+ entry. J Biol Chem 273:9297–9305

    Article  PubMed  CAS  Google Scholar 

  • Fagan KA, Smith KE, Cooper DM (2000) Regulation of the Ca2 + −inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains. J Biol Chem 275:26530–26537

    Article  PubMed  CAS  Google Scholar 

  • Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein beta gamma subunits. Nature 356:159–161

    Article  PubMed  CAS  Google Scholar 

  • Gao BN, Gilman AG (1991) Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Nat Acad Sci U S A 88:10178–10182

    Article  CAS  Google Scholar 

  • Gao X, Sadana R, Dessauer CW, Patel TB (2007) Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J Biol Chem 282:294–302

    Article  PubMed  CAS  Google Scholar 

  • Gao MH, Tang T, Lai NC, Miyanohara A, Guo T, Tang R, Firth AL, Yuan JX, Hammond HK (2011) Beneficial effects of adenylyl cyclase type 6 (AC6) expression persist using a catalytically inactive AC6 mutant. Mol Pharmacol 79:381–388

    Article  PubMed  CAS  Google Scholar 

  • Gros R, Ding Q, Cao H, Main T, Hegele RA, Feldman RD (2005) Identification of a dysfunctional missense single nucleotide variant of human adenylyl cyclase VI. Clin Pharmacol Ther 77:271–278

    Article  PubMed  CAS  Google Scholar 

  • Gros R, Ding Q, Chorazyczewski J, Pickering JG, Limbird LE, Feldman RD (2006) Adenylyl cyclase isoform-selective regulation of vascular smooth muscle proliferation and cytoskeletal reorganization. Circulat Res 99:845–852

    Article  PubMed  CAS  Google Scholar 

  • Gros R, Van Uum S, Hutchinson-Jaffe A, Ding Q, Pickering JG, Hegele RA, Feldman RD (2007) Increased enzyme activity and beta-adrenergic mediated vasodilation in subjects expressing a single-nucleotide variant of human adenylyl cyclase 6. Arterioscler Thromb Vasc Biol 27:2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  PubMed  CAS  Google Scholar 

  • Harry A, Chen Y, Magnusson R, Iyengar R, Weng G (1997) Differential regulation of adenylyl cyclases by Galphas. J Biol Chem 272:19017–19021

    Article  PubMed  CAS  Google Scholar 

  • Hodges GJ, Gros R, Hegele RA, Van Uum S, Shoemaker JK, Feldman RD (2010) Increased blood pressure and hyperdynamic cardiovascular responses in carriers of a common hyperfunctional variant of adenylyl cyclase 6. J Pharmacol Exp Ther 335:451–457

    Article  PubMed  CAS  Google Scholar 

  • Iwami G, Kawabe J, Ebina T, Cannon PJ, Homcy CJ, Ishikawa Y (1995) Regulation of adenylyl cyclase by protein kinase A. J Biol Chem 270:12481–12484

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto T, Okumura S, Iwatsubo K, Kawabe J, Ohtsu K, Sakai I, Hashimoto Y, Izumitani A, Sango K, Ajiki K, Toya Y, Umemura S, Goshima Y, Arai N, Vatner SF, Ishikawa Y (2003) Motor dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem 278:16936–16940

    Article  PubMed  CAS  Google Scholar 

  • Iyengar R (1993) Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J 7:768–775

    PubMed  CAS  Google Scholar 

  • Jacobowitz O, Iyengar R (1994) Phorbol ester-induced stimulation and phosphorylation of adenylyl cyclase 2. Proc Nat Acad Sci U S A 91:10630–10634

    Article  CAS  Google Scholar 

  • Jacobowitz O, Chen J, Premont RT, Iyengar R (1993) Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment. J Biol Chem 268:3829–3832

    PubMed  CAS  Google Scholar 

  • Kapiloff MS, Piggott LA, Sadana R, Li J, Heredia LA, Henson E, Efendiev R, Dessauer CW (2009) An adenylyl cyclase-mAKAPbeta signaling complex regulates cAMP levels in cardiac myocytes. J Biol Chem 284:23540–23546

    Article  PubMed  CAS  Google Scholar 

  • Katsushika S, Chen L, Kawabe J, Nilakantan R, Halnon NJ, Homcy CJ, Ishikawa Y (1992) Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Nat Acad Sci U S A 89:8774–8778

    Article  CAS  Google Scholar 

  • Kawabe J, Iwami G, Ebina T, Ohno S, Katada T, Ueda Y, Homcy CJ, Ishikawa Y (1994) Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J Biol Chem 269:16554–16558

    PubMed  CAS  Google Scholar 

  • Lai HL, Yang TH, Messing RO, Ching YH, Lin SC, Chern Y (1997) Protein kinase C inhibits adenylyl cyclase type VI activity during desensitization of the A2a-adenosine receptor-mediated cAMP response. J Biol Chem 272:4970–4977

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Lelievre V, Zhao P, Torres M, Rodriguez W, Byun JY, Doshi S, Loffe Y, Gupta G, de los Monteros AE, de Vellis J, Waschek J (2001) Pituitary adenylyl cyclase-activating polypeptide stimulates DNA synthesis but delays maturation of oligodendrocyte progenitors. J Neurosci 21:3849–3859

    PubMed  CAS  Google Scholar 

  • Livera G, Xie F, Garcia MA, Jaiswal B, Chen J, Law E, Storm DR, Conti M (2005) Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Mol Endocrinol 19:1277–1290

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499

    Article  PubMed  CAS  Google Scholar 

  • Onda T, Hashimoto Y, Nagai M, Kuramochi H, Saito S, Yamazaki H, Toya Y, Sakai I, Homcy CJ, Nishikawa K, Ishikawa Y (2001) Type-specific regulation of adenylyl cyclase. Selective pharmacological stimulation and inhibition of adenylyl cyclase isoforms. J Biol Chem 276:47785–47793

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: Implications for molecular pharmacology. Br J Pharmacol 143:235–245

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Violin JD, Coleman S, Insel PA (2000) Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol 57:1075–1079

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Gregorian C, Drenan RM, Xiang Y, Regan JW, Insel PA (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276:42063–42069

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Liu X, Head BP, Gregorian C, Seasholtz TM, Insel PA (2002) Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains. Mol Pharmacol 62:983–992

    Article  PubMed  CAS  Google Scholar 

  • Pagano M, Clynes MA, Masada N, Ciruela A, Ayling LJ, Wachten S, Cooper DM (2009) Insights into the residence in lipid rafts of adenylyl cyclase AC8 and its regulation by capacitative calcium entry. Am J Physiol Cell Physiol 296:C607–C619

    Article  PubMed  CAS  Google Scholar 

  • Patel TB, Du Z, Pierre S, Cartin L, Scholich K (2001) Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 269:13–25

    Article  PubMed  CAS  Google Scholar 

  • Piggott LA, Bauman AL, Scott JD, Dessauer CW (2008) The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain. Proc Nat Acad Sci U S A 105:13835–13840

    Article  CAS  Google Scholar 

  • Premont RT, Matsuoka I, Mattei MG, Pouille Y, Defer N, Hanoune J (1996) Identification and characterization of a widely expressed form of adenylyl cyclase. J Biol Chem 271:13900–13907

    Article  PubMed  CAS  Google Scholar 

  • Smith KE, Gu C, Fagan KA, Hu B, Cooper DM (2002) Residence of adenylyl cyclase type 8 in caveolae is necessary but not sufficient for regulation by capacitative Ca2+ entry. J Biol Chem 277:6025–6031

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2:168–184

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science 254:1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Krupinski J, Gilman AG (1991) Expression and characterization of calmodulin-activated (type I) adenylylcyclase. J Biol Chem 266:8595–8603

    PubMed  CAS  Google Scholar 

  • Taussig R, Iniguez-Lluhi JA, Gilman AG (1993a) Inhibition of adenylyl cyclase by Gi alpha. Science 261:218–221

    Article  PubMed  CAS  Google Scholar 

  • Taussig R, Quarmby LM, Gilman AG (1993b) Regulation of purified type I and type II adenylylcyclases by G protein beta gamma subunits. J Biol Chem 268:9–12

    PubMed  CAS  Google Scholar 

  • Taussig R, Tang WJ, Hepler JR, Gilman AG (1994) Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 269:6093–6100

    PubMed  CAS  Google Scholar 

  • Thangavel M, Liu X, Sun SQ, Kaminsky J, Ostrom RS (2009) The C1 and C2 domains target human type 6 adenylyl cyclase to lipid rafts and caveolae. Cell Signal 21:301–308

    Article  PubMed  CAS  Google Scholar 

  • Thomas JM, Hoffman BB (1996) Isoform-specific sensitization of adenylyl cyclase activity by prior activation of inhibitory receptors: role of beta gamma subunits in transducing enhanced activity of the type VI isoform. Mol Pharmacol 49:907–914

    PubMed  CAS  Google Scholar 

  • Wang T, Brown MJ (2004) Differential expression of adenylyl cyclase subtypes in human cardiovascular system. Mol Cell Endocrinol 223:55–62

    Article  PubMed  CAS  Google Scholar 

  • Watson PA, Krupinski J, Kempinski AM, Frankenfield CD (1994) Molecular cloning and characterization of the type VII isoform of mammalian adenylyl cyclase expressed widely in mouse tissues and in S49 mouse lymphoma cells. J Biol Chem 269:28893–28898

    PubMed  CAS  Google Scholar 

  • Wayman GA, Wei J, Wong S, Storm DR (1996) Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo. Mol Cell Biol 16:6075–6082

    PubMed  CAS  Google Scholar 

  • Wei J, Wayman G, Storm DR (1996) Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo. J Biol Chem 271:24231–24235

    Article  PubMed  CAS  Google Scholar 

  • Willoughby D, Masada N, Wachten S, Pagano M, Halls ML, Everett KL, Ciruela A, Cooper DM (2010) AKAP79/150 interacts with AC8 and regulates Ca2 + −dependent cAMP synthesis in pancreatic and neuronal systems. J Biol Chem 285:20328–20342

    Article  PubMed  CAS  Google Scholar 

  • Wong ST, Trinh K, Hacker B, Chan GC, Lowe G, Gaggar A, Xia Z, Gold GH, Storm DR (2000) Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27:487–497

    Article  PubMed  CAS  Google Scholar 

  • Wong ST, Baker LP, Trinh K, Hetman M, Suzuki LA, Storm DR, Bornfeldt KE (2001) Adenylyl cyclase 3 mediates prostaglandin E(2)-induced growth inhibition in arterial smooth muscle cells. J Biol Chem 276:34206–34212

    Article  PubMed  CAS  Google Scholar 

  • Wuttke MS, Buck J, Levin LR (2001) Bicarbonate-regulated soluble adenylyl cyclase. JOP 2:154–158

    PubMed  CAS  Google Scholar 

  • Yan L, Vatner DE, O'Connor JP, Ivessa A, Ge H, Chen W, Hirotani S, Ishikawa Y, Sadoshima J, Vatner SF (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130:247–258

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M, Cooper DM (1992) Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells. Proc Nat Acad Sci U S A 89:6716–6720

    Article  CAS  Google Scholar 

  • Zhou XB, Wang GX, Huneke B, Wieland T, Korth M (2000) Pregnancy switches adrenergic signal transduction in rat and human uterine myocytes as probed by BKCa channel activity. J Physiol 524(Pt 2):339–352

    Article  PubMed  CAS  Google Scholar 

  • Zhou XB, Lutz S, Steffens F, Korth M, Wieland T (2007) Oxytocin \receptors differentially signal via Gq and Gi proteins in pregnant and nonpregnant rat uterine myocytes: implications for myometrial contractility. Mol Endocrinol 21:740–752

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross D. Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrom, R.S., Bogard, A.S., Gros, R. et al. Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps. Naunyn-Schmiedeberg's Arch Pharmacol 385, 5–12 (2012). https://doi.org/10.1007/s00210-011-0696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0696-9

Keywords

Navigation