Skip to main content
Log in

Importance of the Kir6.2 N-terminus for the interaction of glibenclamide and repaglinide with the pancreatic KATP channel

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The pancreatic KATP channel, SUR1/Kir6.2, couples insulin secretion to the plasma glucose level. The channel is an octamer with four Kir6.2 subunits forming the pore and four sulphonylurea receptors (SUR1) regulating channel activity. SUR1 is an ABC protein with adenosine triphosphate (ATP)ase activity which activates the channel. It also contains the binding site for antidiabetic drugs like glibenclamide and repaglinide which close the channel by disrupting the stimulatory effect SUR-ATPase (MgATP-dependent) and by stabilising a long-lived closed channel state (MgATP-independent). In this study, we examined the effects of progressive truncation of the Kir6.2 N-terminus up to 20 amino acids on equilibrium binding and channel closure by glibenclamide and repaglinide, on the channel activating effect of the opener, 6-chloro-3-(1-methylcyclobutyl)amino-4H-thieno[3,2-e]-1,2,4thiadiazine 1,1-dioxide (NNC 55-0462), and on the binding kinetics of [3H]glibenclamide. Kir and SUR were transiently coexpressed in HEK cells and [3H]glibenclamide binding and patch–clamp experiments were performed in whole cells at 37°C and in isolated inside/out patches at 22°C. Truncation of the first 5 N-terminal amino acids abolished most of the affinity increase for glibenclamide and repaglinide that is produced by the association of Kir6.2 with SUR1. Progressive truncation continuously reduced the potency and efficacy of these drugs in closing the channel and impaired the ability to stabilise the closed state more than the ability to disrupt channel stimulation by SUR-ATPase. The effects of NNC 55-0462 were unchanged. Progressive truncation also speeded up dissociation of [3H]glibenclamide from the channel when dissociation was induced by an excess of (unlabelled) glibenclamide. This suggests the existence of a putative low affinity glibenclamide site on the channel whose affinity increases upon truncation. The data show that progressive truncation of the Kir6.2 N-terminus impairs the transduction of drug binding into channel closure more strongly than drug binding but leaves the effect of the opener NNC 55-0462 unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GBC:

glibenclamide

KATP channels:

ATP-sensitive K+ channels

Kir:

inwardly rectifying K+ channel

NNC 55-0462:

6-chloro-3-(1-methylcyclobutyl)amino-4H-thieno[3,2-e]-1,2,4thiadiazine 1,1-dioxide

RPG:

repaglinide

SUR:

sulphonylurea receptor

References

  • Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP IV, Boyd AE III, Gonzáles G, Herrera-Soza H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the b cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426

    Article  PubMed  CAS  Google Scholar 

  • Ashfield R, Gribble FM, Ashcroft SJH, Ashcroft FM (1999) Identification of the high-affinity tolbutamide site on the SUR1 subunit of the KATP channel. Diabetes 48:1341–1347

    Article  PubMed  CAS  Google Scholar 

  • Babenko AP, Gonzalez G, Bryan J (1999a) The N-terminus of KIR6.2 limits spontaneous bursting and modulates the ATP-inhibition of KATP channels. Biochem Biophys Res Commun 255:231–238

    Article  PubMed  CAS  Google Scholar 

  • Babenko AP, Gonzalez G, Bryan J (1999b) The tolbutamide site of SUR1 and a mechanism for its functional coupling to KATP channel closure. FEBS Lett 459:367–376

    Article  PubMed  CAS  Google Scholar 

  • Babenko AP, Gonzalez G, Bryan J (2000) Pharmaco-topology of sulfonylurea receptors—separate domains of the regulatory subunits of KATP channel isoforms are required for selective interaction with K+ channel openers. J Biol Chem 275:717–720

    Article  PubMed  CAS  Google Scholar 

  • Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York, pp 55-65–92-118

    Google Scholar 

  • Bryan J, Crane A, Vila-Carriles WH, Babenko AP, Aguilar-Bryan L (2005) Insulin secretagogues, sulfonylurea receptors and KATP channels. Curr Pharm Design 11:2699–2716

    Article  CAS  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K i) and the concentration of inhibitor which causes 50% inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos A (1998) Assessing the distribution of parameters in models of ligand-receptor interaction: to log or not to log. Trends Pharmacol Sci 19:351–357

    Article  PubMed  CAS  Google Scholar 

  • Clement JP IV, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of KATP channel subunits. Neuron 18:827–838

    Article  PubMed  CAS  Google Scholar 

  • Dabrowski M, Wahl P, Holmes WE, Ashcroft FM (2001) Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Diabetologia 44:747–756

    Article  PubMed  CAS  Google Scholar 

  • Dörschner H, Brekardin E, Uhde I, Schwanstecher C, Schwanstecher M (1999) Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure. Mol Pharmacol 55:1060–1066

    PubMed  Google Scholar 

  • Enkvetchakul D, Loussouarn G, Makhina E, Shyng SL, Nichols CG (2000) The kinetic and physical basis of KATP channel gating: toward a unified molecular understanding. Biophys J 78:2334–2348

    Article  PubMed  CAS  Google Scholar 

  • Gillis KD, Gee WM, Hammoud A, McDaniel ML, Falke LC, Misler S (1989) Effects of sulfonamides on a metabolite-regulated ATPi-sensitive K+ channel in rat pancreatic B-cells. Am J Physiol 257:C1119–C1127

    PubMed  CAS  Google Scholar 

  • Gribble FM, Tucker SJ, Seino S, Ashcroft FM (1998) Tissue specificity of sulfonylureas: studies on cloned cardiac and b-cell KATP channels. Diabetes 47:1412–1418

    Article  PubMed  CAS  Google Scholar 

  • Gromada J, Dissing S, Kofod H, Frøkjaer-Jensen J (1995) Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in b TC3 cells and rat pancreatic beta cells. Diabetologia 38:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Hambrock A, Löffler-Walz C, Russ U, Lange U, Quast U (2001) Characterization of a mutant sulfonylurea receptor SUR2B with high affinity for sulfonylureas and openers: differences in the coupling to Kir6.x subtypes. Mol Pharmacol 60:190–199

    PubMed  CAS  Google Scholar 

  • Hansen AMK, Christensen IT, Hansen JB, Carr RD, Ashcroft FM, Wahl P (2002) Differential interactions of nateglinide and repaglinide on the human b-cell sulphonylurea receptor 1. Diabetes 51:2789–2795

    Article  PubMed  CAS  Google Scholar 

  • Hansen AMK, Hansen JB, Carr RD, Ashcroft FM, Wahl P (2005) Kir6.2-dependent high-affinity repaglinide binding to b-cell KATP channels. Br J Pharmacol 144:551–557

    Article  PubMed  CAS  Google Scholar 

  • Koster JC, Sha Q, Nichols CG (1999a) Sulfonylurea and K+-channel opener sensitivity of KATP channels—functional coupling of Kir6.2 and SUR1 subunits. J Gen Physiol 114:203–213

    Article  PubMed  CAS  Google Scholar 

  • Koster JC, Sha Q, Shyng S-L, Nichols CG (1999b) ATP inhibition of KATP channels: control of nucleotide sensitivity by the N-terminal domain of the Kir6.2 subunit. J Physiol 515:19–30

    Article  PubMed  CAS  Google Scholar 

  • Mikhailov MV, Mikhailova EA, Ashcroft SJH (2001) Molecular structure of the glibenclamide binding site of the b-cell K-ATP channel. FEBS Lett 499:154–160

    Article  PubMed  CAS  Google Scholar 

  • Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476

    Article  PubMed  CAS  Google Scholar 

  • Nielsen FE, Bodvarsdottir TB, Worsaae A, MacKay P, Stidsen CE, Boonen HCM, Pridal L, Arkhammar POG, Wahl P, Ynddal L, Junager F, Dragsted N, Tagmose TM, Mogensen JP, Koch A, Treppendahl SP, Hansen JB (2002) 6-Chloro-3-alkylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide derivatives potently and selectively activate ATP sensitive potassium channels of pancreatic b-cells. J Med Chem 45:4171–4187

    Article  PubMed  CAS  Google Scholar 

  • Proks P, Reimann F, Green N, Gribble F, Ashcroft F (2002) Sulfonylurea stimulation of insulin secretion. Diabetes 51:S368–S376

    Article  PubMed  CAS  Google Scholar 

  • Reimann F, Tucker SJ, Proks P, Ashcroft FM (1999) Involvement of the N-terminus of Kir6.2 in coupling to the sulphonylurea receptor. J Physiol 518:325–336

    Article  PubMed  CAS  Google Scholar 

  • Reimann F, Dabrowski M, Jones P, Gribble FM, Ashcroft FM (2003) Analysis of the differential modulation of sulphonylurea block of beta-cell and cardiac ATP-sensitive K+ (KATP) channels by Mg-nucleotides. J Physiol 547:159–168

    Article  PubMed  CAS  Google Scholar 

  • Russ U, Hambrock A, Artunc F, Löffler-Walz C, Horio Y, Kurachi Y, Quast U (1999) Coexpression with the inward rectifier K+ channel Kir6.1 increases the affinity of the vascular sulfonylurea receptor SUR2B for glibenclamide. Mol Pharmacol 56:955–961

    PubMed  CAS  Google Scholar 

  • Russ U, Kühner P, Prager R, Stephan D, Bryan J, Quast U (2009) Incomplete dissociation of glibenclamide from wild-type and mutant pancreatic KATP channels limits their recovery from inhibition. Br J Pharmacol 156:354–361

    Article  PubMed  CAS  Google Scholar 

  • Shyng S-L, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664

    Article  PubMed  CAS  Google Scholar 

  • Stephan D, Winkler M, Kühner P, Russ U, Quast U (2006) Selectivity of repaglinide and glibenclamide for the pancreatic over the cardiovascular KATP channels. Diabetologia 49:2039–2048

    Article  PubMed  CAS  Google Scholar 

  • Tallarida RJ (1995) Receptor discrimination and control of agonist-antagonist binding. Am J Physiol Endocrinol Metab 269:E379–E391

    CAS  Google Scholar 

  • Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Inagaki N, Seino S (1997) MgADP antagonism to Mg2+-independent ATP binding of the sulfonylurea receptor SUR1. J Biol Chem 272:22983–22986

    Article  PubMed  CAS  Google Scholar 

  • Vila-Carriles WH, Zhao G, Bryan J (2007) Defining a binding pocket for sulfonylureas in ATP-sensitive potassium channels. FASEB J 21:18–25

    Article  PubMed  CAS  Google Scholar 

  • Winkler M, Stephan D, Bieger S, Kühner P, Wolff F, Quast U (2007) Testing the bipartite model of the sulfonylurea receptor binding site: binding of A-, B-, and A+B-site ligands. J Pharmacol Exp Ther 322:701–708

    Article  PubMed  CAS  Google Scholar 

  • Zingman LV, Alekseev AE, Bienengraeber M, Hodgson D, Karger AB, Dzeja PP, Terzic A (2001) Signaling in channel/enzyme multimers: ATPase transitions in SUR module gate ATP-sensitive K+ conductance. Neuron 31:233–245

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft grant Qu100/4-1 (UQ), the Dr. Karl Kuhn-Stiftung (UR) and the American Diabetes Association grant 1-10-BS21 (JB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Quast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühner, P., Prager, R., Stephan, D. et al. Importance of the Kir6.2 N-terminus for the interaction of glibenclamide and repaglinide with the pancreatic KATP channel. Naunyn-Schmiedeberg's Arch Pharmacol 385, 299–311 (2012). https://doi.org/10.1007/s00210-011-0709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0709-8

Keywords

Navigation