Skip to main content

Advertisement

Log in

β2-adrenoceptor agonists can both stimulate and inhibit glucose uptake in mouse soleus muscle through ligand-directed signalling

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The β-adrenoceptor agonists BRL37344 and clenbuterol have opposite effects on glucose uptake in mouse soleus muscle, even though the β2-adrenoceptor mediates both effects. Different agonists may direct the soleus muscle β2-adrenoceptor to different signalling mechanisms. Soleus muscles were incubated with 2-deoxy[1-14C]-glucose, β-adrenoceptor agonists, other modulators of cyclic AMP, and inhibitors of intracellular signalling. The adenylyl cyclase activator forskolin (1 μM), the phosphodiesterase inhibitor rolipram (10 μM) and BRL37344 (10, but not 100 or 1,000, nM) increased, whereas clenbuterol (100 nM) decreased, glucose uptake. Forskolin increased, whereas clenbuterol decreased, muscle cyclic AMP content. BRL37344 (10 nM) did not increase cyclic AMP. Nevertheless, protein kinase A (PKA) inhibitors prevented the stimulatory effect of BRL37344. Nanomolar but not micromolar concentrations of adrenaline stimulated glucose uptake. After preincubation of muscles with pertussis toxin (100 ng/ml), 100 nM clenbuterol, 0.1-10 μM adrenaline and 100 nM BRL37344 stimulated glucose uptake. Clenbuterol increased the proportion of phosphorylated to total β2-adrenoceptor. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and the stress-activated mitogen-activated protein kinase (MAPK), but not of the classical MAPK pathway, prevented stimulation of glucose uptake by BRL37344. Elevation of the cyclic AMP content of soleus muscle stimulates glucose uptake. Clenbuterol, and high concentrations of adrenaline and BRL37344 direct the β2-adrenoceptor partly to Gαi, possibly mediated by β2-adrenoceptor phosphorylation. The stimulatory effect of 10 nM BRL37344 requires the activity of PKA, PI3K and p38 MAPK, consistent with BRL37344 directing the β2-adrenoceptor to Gαs. Ligand-directed signalling may explain why β2-adrenoceptor agonists have differing effects on glucose uptake in soleus muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe H, Minokoshi Y, Shimazu T (1993) Effect of a β3-adrenergic agonist, BRL 35135A, on glucose uptake in rat skeletal muscle in vivo and in vitro. J Endocrinol 139:479–486

    Article  PubMed  CAS  Google Scholar 

  • Arcaro A, Wymann MP (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J 296(Pt 2):297–301

    PubMed  CAS  Google Scholar 

  • Aslesen R, Jensen J (1998) Effects of epinephrine on glucose metabolism in contracting rat skeletal muscles. Am J Physiol 275:E448–456

    PubMed  CAS  Google Scholar 

  • Baker JG, Hall IP, Hill SJ (2003) Agonist and inverse agonist actions of β-blockers at the human β2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol 64:1357–1369

    Article  PubMed  CAS  Google Scholar 

  • Baker JG, Hill SJ (2007) Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates. Trends Pharmacol Sci 28:374–381

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Rivero J, Aras-Lopez R, Del Campo L, Sagredo A, Balfagon G, Ferrer M (2006) Orchidectomy increases β-adrenoceptor activation-mediated neuronal nitric oxide and noradrenaline release in rat mesenteric artery. Neuroendocrinology 84:378–385

    Article  PubMed  CAS  Google Scholar 

  • Board M, Doyle P, Cawthorne MA (2000) BRL37344, but not CGP12177, stimulates fuel oxidation by soleus muscle in vitro. Eur J Pharmacol 406:33–40

    Article  PubMed  CAS  Google Scholar 

  • Brixius K, Bloch W, Pott C, Napp A, Krahwinkel A, Ziskoven C, Koriller M, Mehlhorn U, Hescheler J, Fleischmann B, Schwinger RH (2004) Mechanisms of β3-adrenoceptor-induced eNOS activation in right atrial and left ventricular human myocardium. Br J Pharmacol 143:1014–1022

    Article  PubMed  CAS  Google Scholar 

  • Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15:5256–5267

    PubMed  CAS  Google Scholar 

  • Buhl ES, Jessen N, Schmitz O, Pedersen SB, Pedersen O, Holman GD, Lund S (2001) Chronic treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes 50:12–17

    Article  PubMed  CAS  Google Scholar 

  • Canova NK, Lincova D, Kmonickova E, Kamenikova L, Farghali H (2006) Nitric oxide production from rat adipocytes is modulated by β3-adrenergic receptor agonists and is involved in a cyclic AMP-dependent lipolysis in adipocytes. Nitric Oxide 14:200–211

    Article  PubMed  CAS  Google Scholar 

  • Chambers MA, Moylan JS, Smith JD, Goodyear LJ, Reid MB (2009) Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J Physiol 587:3363–3373

    Article  PubMed  CAS  Google Scholar 

  • Cheng HC, Kemp BE, Pearson RB, Smith AJ, Misconi L, Van Patten SM, Walsh DA (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem 261:989–992

    PubMed  CAS  Google Scholar 

  • Chernogubova E, Cannon B, Bengtsson T (2004) Norepinephrine increases glucose transport in brown adipocytes via β3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145:269–280

    Article  PubMed  CAS  Google Scholar 

  • Chiasson JL, Shikama H, Chu DT, Exton JH (1981) Inhibitory effect of epinephrine on insulin-stimulated glucose uptake by rat skeletal muscle. J Clin Invest 68:706–713

    Article  PubMed  CAS  Google Scholar 

  • Ciccarelli M, Cipolletta E, Santulli G, Campanile A, Pumiglia K, Cervero P, Pastore L, Astone D, Trimarco B, Iaccarino G (2007) Endothelial β2-adrenergic signaling to AKT: role of Gi and SRC. Cell Signal 19:1949–1955

    Article  PubMed  CAS  Google Scholar 

  • Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3:403–416

    Article  PubMed  CAS  Google Scholar 

  • Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91

    Article  PubMed  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  PubMed  CAS  Google Scholar 

  • Dehvari N, Hutchinson DS, Nevzorova J, Dallner OS, Sato M, Kocan M, Merlin J, Evans BA, Summers RJ, Bengtsson T (2012) β2-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail. Br J Pharmacol 165:1442–1456

    Article  PubMed  CAS  Google Scholar 

  • Elmendorf JS, Damrau-Abney A, Smith TR, David TS, Turinsky J (1995) Insulin-stimulated phosphatidylinositol 3-kinase activity and 2-deoxy-D-glucose uptake in rat skeletal muscles. Biochem Biophys Res Commun 208:1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Evans BA, Sato M, Sarwar M, Hutchinson DS, Summers RJ (2010) Ligand-directed signalling at β-adrenoceptors. Br J Pharmacol 159:1022–1038

    Article  PubMed  CAS  Google Scholar 

  • Fediuc S, Gaidhu MP, Ceddia RB (2006) Inhibition of insulin-stimulated glycogen synthesis by 5-aminoimidasole-4-carboxamide-1-β-d-ribofuranoside-induced adenosine 5′-monophosphate-activated protein kinase activation: interactions with Akt, glycogen synthase kinase 3-3α/β, and glycogen synthase in isolated rat soleus muscle. Endocrinology 147:5170–5177

    Article  PubMed  CAS  Google Scholar 

  • Figueira ME, do Vale FM, Barroso MI, Rico JM, Castro M (1998) Dietary β-adrenoceptor agonists have a persistent effect on nitric oxide synthesis in rat cultured smooth muscle cells. Eur J Pharmacol 362:261–266

    Article  PubMed  CAS  Google Scholar 

  • Fluckey JD, Knox M, Smith L, Dupont-Versteegden EE, Gaddy D, Tesch PA, Peterson CA (2006) Insulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP kinase pathway. Am J Physiol Endocrinol Metab 290:E1205–1211

    Article  PubMed  CAS  Google Scholar 

  • Frost RA, Nystrom GJ, Lang CH (2004) Epinephrine stimulates IL-6 expression in skeletal muscle and C2C12 myoblasts: role of c-Jun NH2-terminal kinase and histone deacetylase activity. Am J Physiol Endocrinol Metab 286:E809–817

    Article  PubMed  CAS  Google Scholar 

  • Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Funaki M, Inukai K, Fukushima Y, Kikuchi M, Oka Y, Asano T (2001) MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem 276:19800–19806

    Article  PubMed  CAS  Google Scholar 

  • Galandrin S, Bouvier M (2006) Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Le Marec H (1998) The negative inotropic effect of β3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102:1377–1384

    Article  PubMed  CAS  Google Scholar 

  • Gosmanov AR, Nordtvedt NC, Brown R, Thomason DB (2002) Exercise effects on muscle β-adrenergic signaling for MAPK-dependent NKCC activity are rapid and persistent. J Appl Physiol 93:1457–1465

    PubMed  CAS  Google Scholar 

  • Gosmanov AR, Thomason DB (2002) Insulin and isoproterenol differentially regulate mitogen-activated protein kinase-dependent Na(+)-K(+)-2Cl(−) cotransporter activity in skeletal muscle. Diabetes 51:615–623

    Article  PubMed  CAS  Google Scholar 

  • Heubach JF, Ravens U, Kaumann AJ (2004) Epinephrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human β2-adrenoceptors overexpressed in mouse heart. Mol Pharmacol 65:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Higaki Y, Mikami T, Fujii N, Hirshman MF, Koyama K, Seino T, Tanaka K, Goodyear LJ (2008) Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am J Physiol Endocrinol Metab 294:E889–897

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Bengtsson T (2006) AMP-activated protein kinase activation by adrenoceptors in L6 skeletal muscle cells: mediation by α1-adrenoceptors causing glucose uptake. Diabetes 55:682–690

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Bengtsson T, Evans BA, Summers RJ (2002) Mouse β3a- and β3b-adrenoceptors expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct signalling pathways. Br J Pharmacol 135:1903–1914

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Chernogubova E, Dallner OS, Cannon B, Bengtsson T (2005a) β-adrenoceptors, but not α-adrenoceptors, stimulate AMP-activated protein kinase in brown adipocytes independently of uncoupling protein-1. Diabetologia 48:2386–2395

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Sato M, Evans BA, Christopoulos A, Summers RJ (2005b) Evidence for pleiotropic signaling at the mouse β3-adrenoceptor revealed by SR59230A [3-(2-Ethylphenoxy)-1-[(1, S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S–2-propa nol oxalate]. J Pharmacol Exp Ther 312:1064–1074

    Article  PubMed  CAS  Google Scholar 

  • Jo SH, Leblais V, Wang PH, Crow MT, Xiao RP (2002) Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent Gs signaling during β2-adrenergic stimulation. Circ Res 91:46–53

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen SB, Honeyman J, Oakhill JS, Fazakerley D, Stockli J, Kemp BE, Steinberg GR (2009) Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation. Am J Physiol Endocrinol Metab 297:E57–66

    Article  PubMed  CAS  Google Scholar 

  • Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, Oas TG, Lefkowitz RJ (2011) Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat Chem Biol 7:692–700

    Article  PubMed  CAS  Google Scholar 

  • Kanda Y, Watanabe Y (2007) Adrenaline increases glucose transport via a Rap1-p38MAPK pathway in rat vascular smooth muscle cells. Br J Pharmacol 151:476–482

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Bedard S, Marcotte B, Cote CH, Marette A (1997) Expression of nitric oxide synthase in skeletal muscle: a novel role for nitric oxide as a modulator of insulin action. Diabetes 46:1691–1700

    Article  PubMed  CAS  Google Scholar 

  • Kaushik VK, Young ME, Dean DJ, Kurowski TG, Saha AK, Ruderman NB (2001) Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. Am J Physiol Endocrinol Metab 281:E335–340

    PubMed  CAS  Google Scholar 

  • Kenakin T (1995) Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol Sci 16:232–238

    Article  PubMed  CAS  Google Scholar 

  • Kong D, Dan S, Yamazaki K, Yamori T (2010) Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39. Eur J Cancer 46:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Lazar S, Galiani D, Dekel N (2002) cAMP-Dependent PKA negatively regulates polyadenylation of c-mos mRNA in rat oocytes. Mol Endocrinol 16:331–341

    Article  PubMed  CAS  Google Scholar 

  • Leblais V, Jo SH, Chakir K, Maltsev V, Zheng M, Crow MT, Wang W, Lakatta EG, Xiao RP (2004) Phosphatidylinositol 3-kinase offsets cAMP-mediated positive inotropic effect via inhibiting Ca2+ influx in cardiomyocytes. Circ Res 95:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Liu YL, Cawthorne MA, Stock MJ (1996) Biphasic effects of the β-adrenoceptor agonist, BRL 37344, on glucose utilization in rat isolated skeletal muscle. Br J Pharmacol 117:1355–1361

    Article  PubMed  CAS  Google Scholar 

  • Lu ZX, Quazi NH, Deady LW, Polya GM (1996) Selective inhibition of cyclic AMP-dependent protein kinase by isoquinoline derivatives. Biol Chem Hoppe Seyler 377:373–384

    Article  PubMed  CAS  Google Scholar 

  • McAlees JW, Sanders VM (2009) Hematopoietic protein tyrosine phosphatase mediates β2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol Cell Biol 29:675–686

    Article  PubMed  CAS  Google Scholar 

  • McConell GK, Wadley GD (2008) Potential role of nitric oxide in contraction-stimulated glucose uptake and mitochondrial biogenesis in skeletal muscle. Clin Exp Pharmacol Physiol 35:1488–1492

    PubMed  CAS  Google Scholar 

  • McGrowder D, Ragoobirsingh D, Brown P (2006) Acute effects of exogenous nitric oxide on glucose uptake in skeletal muscle of normoglycaemic and diabetic rats. Med Sci Monit 12:BR28–35

    PubMed  CAS  Google Scholar 

  • Murphy KT, Bundgaard H, Clausen T (2006) β3-adrenoceptor agonist stimulation of the Na+, K + −pump in rat skeletal muscle is mediated by β2- rather than β3-adrenoceptors. Br J Pharmacol 149:635–646

    Article  PubMed  CAS  Google Scholar 

  • Nesher R, Karl IE, Kipnis DM (1980) Epitrochlearis muscle. II. Metabolic effects of contraction and catecholamines. Am J Physiol 239:E461–467

    PubMed  CAS  Google Scholar 

  • Nevzorova J, Evans BA, Bengtsson T, Summers RJ (2006) Multiple signalling pathways involved in β2-adrenoceptor-mediated glucose uptake in rat skeletal muscle cells. Br J Pharmacol 147:446–454

    Article  PubMed  CAS  Google Scholar 

  • Ngala RA, O'Dowd J, Wang SJ, Agarwal A, Stocker C, Cawthorne MA, Arch JR (2008) Metabolic responses to BRL37344 and clenbuterol in soleus muscle and C2C12 cells via different atypical pharmacologies and β2-adrenoceptor mechanisms. Br J Pharmacol 155:395–406

    Article  PubMed  CAS  Google Scholar 

  • Ngala RA, O'Dowd J, Wang SJ, Stocker C, Cawthorne MA, Arch JRS (2009) β2-Adrenoceptors and non- β-adrenoceptors mediate effects of BRL37344 and clenbuterol on glucose uptake in soleus muscle: studies using knockout mice. Br J Pharmacol 158(7):1676-82

    Google Scholar 

  • Nishitani S, Matsumura T, Fujitani S, Sonaka I, Miura Y, Yagasaki K (2002) Leucine promotes glucose uptake in skeletal muscles of rats. Biochem Biophys Res Commun 299:693–696

    Article  PubMed  CAS  Google Scholar 

  • Niu W, Bilan PJ, Hayashi M, Da Y, Yao Z (2007) Insulin sensitivity and inhibition by forskolin, dipyridamole and pentobarbital of glucose transport in three L6 muscle cell lines. Sci China C Life Sci 50:739–747

    Article  PubMed  CAS  Google Scholar 

  • Roberts SJ, Summers RJ (1998) Cyclic AMP accumulation in rat soleus muscle: stimulation by β2- but not β3-adrenoceptors. Eur J Pharmacol 348:53–60

    Article  PubMed  CAS  Google Scholar 

  • Robidoux J, Martin TL, Collins S (2004) β-adrenergic receptors and regulation of energy expenditure: a family affair. Annu Rev Pharmacol Toxicol 44:297–323

    Article  PubMed  CAS  Google Scholar 

  • Roy D, Perreault M, Marette A (1998) Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am J Physiol 274:E692–699

    PubMed  CAS  Google Scholar 

  • Sato M, Horinouchi T, Hutchinson DS, Evans BA, Summers RJ (2007) Ligand-directed signaling at the β3-adrenoceptor produced by 3-(2-Ethylphenoxy)-1-[(1, S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S–2-propan ol oxalate (SR59230A) relative to receptor agonists. Mol Pharmacol 72:1359–1368

    Article  PubMed  CAS  Google Scholar 

  • Siedlecka U, Arora M, Kolettis T, Soppa GK, Lee J, Stagg MA, Harding SE, Yacoub MH, Terracciano CM (2008) Effects of clenbuterol on contractility and Ca2+ homeostasis of isolated rat ventricular myocytes. Am J Physiol Heart Circ Physiol 295:H1917–1926

    Article  PubMed  CAS  Google Scholar 

  • Stocker CJ, Wargent E, O'Dowd J, Cornick C, Speakman JR, Arch JR, Cawthorne MA (2007) Prevention of diet-induced obesity and impaired glucose tolerance in rats following administration of leptin to their mothers. Am J Physiol Regul Integr Comp Physiol 292:R1810–1818

    Article  PubMed  CAS  Google Scholar 

  • Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S (2003) Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab 285:E123–129

    PubMed  CAS  Google Scholar 

  • Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248

    PubMed  CAS  Google Scholar 

  • Wallberg-Henriksson H (1987) Glucose transport into skeletal muscle. Influence of contractile activity, insulin, catecholamines and diabetes mellitus. Acta Physiologica Scand Suppl 564:1–80

    CAS  Google Scholar 

  • Wang S, Subramaniam A, Cawthorne MA, Clapham JC (2003) Increased fatty acid oxidation in transgenic mice overexpressing UCP3 in skeletal muscle. Diabetes Obes Metab 5:295–301

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, De Arcangelis V, Gao X, Ramani B, Jung YS, Xiang Y (2008) Norepinephrine- and epinephrine-induced distinct β2-adrenoceptor signaling is dictated by GRK2 phosphorylation in cardiomyocytes. J Biol Chem 283:1799–1807

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszewski JF, Hansen BF, Urso B, Richter EA (1996) Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J Appl Physiol 81:1501–1509

    PubMed  CAS  Google Scholar 

  • Wong JA, Gosmanov AR, Schneider EG, Thomason DB (2001) Insulin-independent, MAPK-dependent stimulation of NKCC activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 281:R561–571

    PubMed  CAS  Google Scholar 

  • Xiang Y, Kobilka B (2003) The PDZ-binding motif of the β2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. Proc Natl Acad Sci U S A 100:10776–10781

    Article  PubMed  CAS  Google Scholar 

  • Xiao RP, Avdonin P, Zhou YY, Cheng H, Akhter SA, Eschenhagen T, Lefkowitz RJ, Koch WJ, Lakatta EG (1999) Coupling of β2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 84:43–52

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto DL, Hutchinson DS, Bengtsson T (2007) β2-Adrenergic activation increases glycogen synthesis in L6 skeletal muscle cells through a signalling pathway independent of cyclic AMP. Diabetologia 50:158–167

    Article  PubMed  CAS  Google Scholar 

  • Yano N, Ianus V, Zhao TC, Tseng A, Padbury JF, Tseng YT (2007) A novel signaling pathway for β-adrenergic receptor-mediated activation of phosphoinositide 3-kinase in H9c2 cardiomyocytes. Am J Physiol Heart Circ Physiol 293:H385–393

    Article  PubMed  CAS  Google Scholar 

  • Yeh JI, Gulve EA, Rameh L, Birnbaum MJ (1995) The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem 270:2107–2111

    Article  PubMed  CAS  Google Scholar 

  • Young DA, Wallberg-Henriksson H, Cranshaw J, Chen M, Holloszy JO (1985) Effect of catecholamines on glucose uptake and glycogenolysis in rat skeletal muscle. Am J Physiol 248:C406–409

    PubMed  CAS  Google Scholar 

  • Young ME, Radda GK, Leighton B (1996) Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR—an activator of AMP-activated protein kinase. FEBS Lett 382:43–47

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    PubMed  CAS  Google Scholar 

  • Zhou G, Sebhat IK, Zhang BB (2009) AMPK activators—potential therapeutics for metabolic and other diseases. Acta Physiol (Oxf) 196:175–190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RAN was supported by a bursary from the Ghanaian government. We thank Julie Cakebread for her work on the manuscript and David Hislop for finalising the figures, and Paul Trayhurn for commenting on the manuscript.

Conflict of interest

J Arch and M Cawthorne consult for various pharmaceutical companies but have no dealings that present any conflict with the results in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. S. Arch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngala, R.A., O’Dowd, J.F., Stocker, C.J. et al. β2-adrenoceptor agonists can both stimulate and inhibit glucose uptake in mouse soleus muscle through ligand-directed signalling. Naunyn-Schmiedeberg's Arch Pharmacol 386, 761–773 (2013). https://doi.org/10.1007/s00210-013-0860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0860-5

Keywords

Navigation