Skip to main content
Log in

Phencyclidine-induced impairment in attention and response control depends on the background genotype of mice: reversal by the mGLU2/3 receptor agonist LY379268

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Converging evidence implicates glutamate neurotransmission in attention and inhibitory response control.

Objective

To investigate how the background genotype contributes to glutamate’s effects on attention and response control, we examined how phencyclidine (PCP) affected the performance of a five-choice serial reaction time (5-CSRT) task in two inbred mouse strains, C57BL/6N and DBA/2N. We also tested a potent mGlu2/3 receptor agonist, LY379268, against PCP’s effects.

Methods

Mice were trained on a 5-CSRT task, which measures visual attention and response control until they reached asymptotic performance. Both strains of mice were then injected intraperitoneally with 0.5, 1.5 or 3.0 mg/kg PCP. Doses of 1.0 and 3.0 mg/kg of LY379268 were injected subcutaneously to vehicle or PCP-treated mice.

Results

At asymptotic performance DBA/2N mice were less accurate and made more anticipatory responses than C57BL/6N. PCP impaired accuracy (% correct) and increased perseverative responses of DBA/2N mice at 1.5 mg/kg. However, at doses up to 3.0 mg/kg it had no effect on these measures in C57BL/6N. In DBA/2N mice 1.5 mg/kg PCP increased anticipatory responses far more than 3.0 mg/kg in C57BL/6N mice. No dose of LY379268 prevented the PCP-induced accuracy deficit of DBA/2N mice. The PCP-induced anticipatory and perseverative responding of DBA/2N mice was reduced by 3.0 mg/kg LY379268, while 1.0 and 3.0 mg/kg reduced anticipatory responding in C57BL/6N.

Conclusions

The background genotype may determine the effects of PCP on attentional performance and the results confirm the importance of glutamate transmission in some aspects of this performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abekawa T, Ohmori T, Ito K, Koyama T (2000) D1 dopamine receptor activation reduces extracellular glutamate and GABA concentrations in the medial prefrontal cortex. Brain Res 867:250–254

    Article  Google Scholar 

  • Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 31:302–312

    Article  Google Scholar 

  • Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev 29:83–120

    CAS  PubMed  Google Scholar 

  • Arnsten AF (1997) Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11:151–162

    CAS  PubMed  Google Scholar 

  • Bakshi VP, Geyer MA (1999) Alpha-1-adrenergic receptors mediate sensorimotor gating deficits produced by intracerebral dizocilpine administration in rats. Neuroscience 92:113–121

    Article  Google Scholar 

  • Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154:805–811

    CAS  PubMed  Google Scholar 

  • Cabib S, Orsini C, Le Moal M, Piazza PV (2000) Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science 289:463–465

    Article  CAS  PubMed  Google Scholar 

  • Cabib S, Puglisi-Allegra S, Ventura R (2002) The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behav Brain Res 130:103–109

    Google Scholar 

  • Carli M, Baviera M, Invernizzi RW, Balducci C (2004) The serotonin 5-HT2A receptors antagonist M100907 prevents impairment in attentional performance by NMDA receptor blockade in the rat prefrontal cortex. Neuropsychopharmacology 29:1637–1647

    Google Scholar 

  • Carney J, Seale TW, Bardo M, Dwoskin L (1992) Qualitative and quantitative difference in the behavioural effects of phencyclidine in inbred mice. In: Kamenka J-M, Domino EF (eds) Multiple sigma and PCP receptors ligands: mechanisms for neuromodulation and neuroprotection? NPP Books, Ann Arbor, pp 607–618

    Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 291:161–170

    CAS  PubMed  Google Scholar 

  • Ceglia I, Carli M, Baviera M, Renoldi G, Calcagno E, Invernizzi RW (2004) The 5-HT2A receptor antagonist M100,907 prevents extracellular glutamate rising in response to NMDA receptor blockade in the mPFC. J Neurochem (in press)

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    Article  Google Scholar 

  • Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW (2002) Deficits in impulse control associated with tonically elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology 26:716–728

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Fossella J, Sommer T, Wu Y, Posner MI (2003) Mapping the genetic variation of executive attention onto brain activity. Proc Natl Acad Sci U S A 100:7406–7411

    Article  Google Scholar 

  • Fossella J, Sommer T, Fan J, Wu Y, Swanson JM, Pfaff DW, Posner MI (2002) Assessing the molecular genetics of attention networks. BMC Neurosci 3:14

    Article  PubMed  Google Scholar 

  • Freed WJ, Crump S, Jeste DV (1984) Genetic effects on PCP-induced stimulation in recombinant inbred strains of mice. Pharmacol Biochem Behav 21:159–162

    Article  Google Scholar 

  • Gleason SD, Shannon HE (1997) Blockade of phencyclidine-induced hyperlocomotion by olanzapine, clozapine and serotonin receptor subtype selective antagonists in mice. Psychopharmacology (Berl) 129:79–84

    Article  Google Scholar 

  • Goldman-Rakic PS, Muly EC III, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301

    Article  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology (Berl) 133:329–342

    Article  Google Scholar 

  • Higgins GA, Ballard TM, Huwyler J, Kemp JA, Gill R (2003a) Evaluation of the NR2B-selective NMDA receptor antagonist Ro 63-1908 on rodent behaviour: evidence for an involvement of NR2B NMDA receptors in response inhibition. Neuropharmacology 44:324–341

    Google Scholar 

  • Higgins GA, Enderlin M, Haman M, Fletcher PJ (2003b) The 5-HT2A receptor antagonist M100,907 attenuates motor and ‘impulsive-type’ behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berl) 170:309–319

    Article  Google Scholar 

  • Holsztynska EJ, Weber WW, Domino EF (1991) Genetic polymorphism of cytochrome P-450-dependent phencyclidine hydroxylation in mice. Comparison of phencyclidine hydroxylation in humans. Drug Metab Dispos 19:48–53

    Google Scholar 

  • Humby T, Laird FM, Davies W, Wilkinson LS (1999) Visuospatial attentional functioning in mice: interactions between cholinergic manipulations and genotype. Eur J Neurosci 11:2813–2823

    Article  Google Scholar 

  • Hwang BH, Kunkler PE, Tarricone BJ, Hingtgen JN, Nurnberger JI Jr (1999) Stress-induced changes of norepinephrine uptake sites in the locus coeruleus of C57BL/6J and DBA/2J mice: a quantitative autoradiographic study using [3H]-tomoxetine. Neurosci Lett 265:151–154

    Article  Google Scholar 

  • Isles AR, Humby T, Walters E, Wilkinson LS (2004) Common genetic effects on variation in impulsivity and activity in mice. J Neurosci 24:6733–6740

    Article  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Google Scholar 

  • Jones BC, Hou X, Cook MN (1996) Effect of exposure to novelty on brain monoamines in C57BL/6 and DBA/2 mice. Physiol Behav 59:361–367

    Article  CAS  PubMed  Google Scholar 

  • Kempf E, Greilsamer J, Mack G, Mandel P (1974) Correlation of behavioural differences in three strains of mice with differences in brain amines. Nature 247:483–485

    Google Scholar 

  • Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97:153–179

    Article  Google Scholar 

  • Koskinen T, Ruotsalainen S, Puumala T, Lappalainen R, Koivisto E, Mannisto PT, Sirvio J (2000) Activation of 5-HT2A receptors impairs response control of rats in a five-choice serial reaction time task. Neuropharmacology 39:471–481

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    CAS  PubMed  Google Scholar 

  • Laurent V, Podhorna J (2004) Subchronic phencyclidine treatment impairs performance of C57BL/6 mice in the attentional set-shifting task. Behav Pharmacol 15:141–148

    Article  Google Scholar 

  • Le Pen G, Grottick AJ, Higgins GA, Moreau JL (2003) Phencyclidine exacerbates attentional deficits in a neurodevelopmental rat model of schizophrenia. Neuropsychopharmacology 28:1799–1809

    Google Scholar 

  • Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA (2003a) Effects of ketamine and N-methyl-d-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706

    Article  Google Scholar 

  • Lorrain DS, Schaffhauser H, Campbell UC, Baccei CS, Correa LD, Rowe B, Rodriguez DE, Anderson JJ, Varney MA, Pinkerton AB, Vernier JM, Bristow LJ (2003b) Group II mGlu receptor activation suppresses norepinephrine release in the ventral hippocampus and locomotor responses to acute ketamine challenge. Neuropsychopharmacology 28:1622–1632

    Google Scholar 

  • Maeda J, Suhara T, Okauchi T, Semba J (2003) Different roles of group I and group II metabotropic glutamate receptors on phencyclidine-induced dopamine release in the rat prefrontal cortex. Neurosci Lett 336:171–174

    Article  Google Scholar 

  • Marston HM, Spratt C, Kelly JS (2001) Phenotyping complex behaviours: assessment of circadian control and 5-choice serial reaction learning in the mouse. Behav Brain Res 125:189–193

    Article  Google Scholar 

  • Martin P, Waters N, Waters S, Carlsson A, Carlsson ML (1997) MK-801-induced hyperlocomotion: differential effects of M100907, SDZ PSD 958 and raclopride. Eur J Pharmacol 335:107–116

    Article  Google Scholar 

  • Martin P, Carlsson ML, Hjorth S (1998) Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. NeuroReport 9:2985–2988

    Google Scholar 

  • Mathe JM, Nomikos GG, Hildebrand BE, Hertel P, Svensson TH (1996) Prazosin inhibits MK-801-induced hyperlocomotion and dopamine release in the nucleus accumbens. Eur J Pharmacol 309:1–11

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    CAS  PubMed  Google Scholar 

  • Ohl F, Roedel A, Binder E, Holsboer F (2003) Impact of high and low anxiety on cognitive performance in a modified hole board test in C57BL/6 and DBA/2 mice. Eur J Neurosci 17:128–136

    Article  Google Scholar 

  • Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F (2004) Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 24:1149–1158

    Article  Google Scholar 

  • Puumala T, Sirvio J (1998) Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 83:489–499

    Article  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163:362–380

    Article  Google Scholar 

  • Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299:12–20

    CAS  PubMed  Google Scholar 

  • Schoepp DD, Marek GJ (2002) Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia? Curr Drug Targets CNS Neurol Disord 1:215–225

    Google Scholar 

  • Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    Google Scholar 

  • Spielewoy C, Markou A (2004) Strain-specificity in nicotine attenuation of phencyclidine-induced disruption of prepulse inhibition in mice: relevance to smoking in schizophrenia patients. Behav Genet 34:343–354

    Google Scholar 

  • Swanson CJ, Schoepp DD (2003) A role for noradrenergic transmission in the actions of phencyclidine and the antipsychotic and antistress effects of mGlu2/3 receptor agonists. Ann N Y Acad Sci 1003:309–317

    Article  Google Scholar 

  • Tseng KY, O’Donnell P (2003) Dopamine–glutamate interactions in the control of cell excitability in medial prefrontal cortical pyramidal neurons from adult rats. Ann N Y Acad Sci 1003:476–478

    Article  Google Scholar 

  • Ventura R, Cabib S, Puglisi-Allegra S (2002) Genetic susceptibility of mesocortical dopamine to stress determines liability to inhibition of mesoaccumbens dopamine and to behavioral ‘despair’ in a mouse model of depression. Neuroscience 115:999–1007

    Article  Google Scholar 

  • Ventura R, Alcaro A, Cabib S, Conversi D, Mandolesi L, Puglisi-Allegra S (2004a) Dopamine in the medial prefrontal cortex controls genotype-dependent effects of amphetamine on mesoaccumbens dopamine release and locomotion. Neuropsychopharmacology 29:72–80

    Google Scholar 

  • Ventura R, Alcaro A, Mandolesi L, Puglisi-Allegra S (2004b) In vivo evidence that genetic background controls impulse-dependent dopamine release induced by amphetamine in the nucleus accumbens. J Neurochem 89:494–502

    Google Scholar 

  • Verma A, Moghaddam B (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379

    Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50:825–844

    Article  Google Scholar 

  • Winer BJ (1971) Statistical principles in experimental design, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Yee BK, Tilly Chang DL, Feldon J (2004) The effects of dizolcipine and phencyclidine on prepulse inhibition of the acoustic startle reflex and on prepulse-elicited reactivity in C57BL6 mice. Neuropsychopharmacology 1–13 (advanced on-line publication)

  • Young JW, Finlayson K, Spratt C, Marston HM, Crawford N, Kelly JS, Sharkey J (2004) Nicotine improves sustained attention in mice: evidence for involvement of the alpha7 nicotinic acetylcholine receptor. Neuropsychopharmacology 29:891–900

    Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AF (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535

    CAS  PubMed  Google Scholar 

  • Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    Article  Google Scholar 

  • Zilles K, Wu J, Crusio WE, Schwegler H (2000) Water maze and radial maze learning and the density of binding sites of glutamate, GABA, and serotonin receptors in the hippocampus of inbred mouse strains. Hippocampus 10:213–225

    Google Scholar 

Download references

Acknowledgements

Funding for these studies was provided by the Italian Ministry for University and Research (MIUR) grant RBAU01ZS5C. We thank Eli Lilly (USA) for the generous gift of LY379268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Carli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, B., Invernizzi, R.W. & Carli, M. Phencyclidine-induced impairment in attention and response control depends on the background genotype of mice: reversal by the mGLU2/3 receptor agonist LY379268. Psychopharmacology 179, 68–76 (2005). https://doi.org/10.1007/s00213-004-2127-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2127-9

Keywords

Navigation