Skip to main content
Log in

The psychostimulant and rewarding effects of cocaine in histidine decarboxylase knockout mice do not support the hypothesis of an inhibitory function of histamine on reward

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

Lesion studies have shown that the tuberomammillary nucleus (TM) exerts inhibitory effects on the brain reward system. To determine whether histamine from the TM is involved in that reward inhibitory function, we assessed the stimulant and rewarding effects of cocaine in knockout mice lacking histidine decarboxylase (HDC KO mice), the histamine-synthesizing enzyme. If histamine actually plays an inhibitory role in reward, then it would be expected that mice lacking histamine would be more sensitive to the behavioral effects of cocaine.

Materials and methods

The first experiment characterized spontaneous locomotion and cocaine-induced hyperactivity (0, 8, and 16 mg/kg, i.p.) in wild-type and HDC KO mice. The rewarding effects of cocaine were investigated in a second experiment with the place-conditioning technique.

Results

The first experiment demonstrated that histidine decarboxylase mice showed reduced exploratory behaviors but normal habituation to the test chambers. After habituation to the test chambers, HDC KO mice were slightly, but significantly, less stimulated by cocaine than control mice. This finding was replicated in the second experiment, when cocaine-induced activity was monitored with the place-conditioning apparatus. Furthermore, a significant place preference was present in both genotypes for 8 and 16 mg/kg cocaine, but not for 2 and 4 mg/kg.

Conclusions

Our data confirm previous results demonstrating that HDC KO mice show reduced exploratory behaviors. However, contrary to the hypothesis that histamine plays an inhibitory role in reward, histamine-deficient mice were not more responsive to the psychostimulant effects of cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302:832–837

    Article  PubMed  ADS  CAS  Google Scholar 

  • Beardsley PM, Balster RL (1992) The intravenous self-administration of antihistamines by rhesus monkeys. Drug Alcohol Depend 30:117–126

    Article  PubMed  CAS  Google Scholar 

  • Bergman J, Spealman RD (1986) Some behavioral effects of histamine H1 antagonists in squirrel monkeys. J Pharmacol Exp Ther 239:104–110

    PubMed  CAS  Google Scholar 

  • Brabant C, Charlier Y, Quertemont E, Tirelli E (2005) The H3 antagonist thioperamide reveals conditioned preference for a context associated with an inactive small dose of cocaine in C57BL/6J mice. Behav Brain Res 160:161–168

    Article  PubMed  CAS  Google Scholar 

  • Brabant C, Quertemont E, Tirelli E (2006) Effects of the H3-receptor inverse agonist thioperamide on the psychomotor effects induced by acutely and repeatedly given cocaine in C57BL/6J mice. Pharmacol Biochem Behav 83:561–569

    Article  PubMed  CAS  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672

    Article  PubMed  CAS  Google Scholar 

  • Clapham J, Kilpatrick GJ (1994) Thioperamide, the selective histamine H3 receptor antagonist, attenuates stimulant-induced locomotor activity in the mouse. Eur J Pharmacol 259:107–114

    Article  PubMed  CAS  Google Scholar 

  • Coelho JL, Medalha CC, Mattioli R (2001) Analysis of the effects of CPA and L-histidine on goldfish tested on a conditioned place preference model. Behav Brain Res 124:161–165

    Article  PubMed  CAS  Google Scholar 

  • Cohn CK, Ball GG, Hirsch J (1973) Histamine: effect on self-stimulation. Science 180:757–758

    Article  PubMed  ADS  CAS  Google Scholar 

  • Dere E, Souza-Silva MA, Topic B, Spieler RE, Haas HL, Huston JP (2003) Histidine-decarboxylase knockout mice show deficient nonreinforced episodic object memory, improved negatively reinforced water–maze performance, and increased neo- and ventro-striatal dopamine turnover. Learn Mem 10:510–519

    Article  PubMed  Google Scholar 

  • Dere E, Souza-Silva MA, Spieler RE, Lin JS, Ohtsu H, Haas HL, Huston JP (2004) Changes in motoric, exploratory and emotional behaviours and neuronal acetylcholine content and 5-HT turnover in histidine decarboxylase-KO mice. Eur J Neurosci 20:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1):227–241

    PubMed  Google Scholar 

  • Ericson H, Watanabe T, Kohler C (1987) Morphological analysis of the tuberomammillary nucleus in the rat brain: delineation of subgroups with antibody against L-histidine decarboxylase as a marker. J Comp Neurol 263:1–24

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein AE, Lookingland KJ, Moore KE (1993) Activation of mesolimbic dopaminergic neurons following central administration of histamine is mediated by H1 receptors. Naunyn Schmiedebergs Arch Pharmacol 347:50–54

    Article  PubMed  CAS  Google Scholar 

  • Fox GB, Esbenshade TA, Pan JB, Radek RJ, Krueger KM, Yao BB, Browman KE et al (2005) Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-Methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther 313:176–190

    Article  PubMed  CAS  Google Scholar 

  • Galosi R, Lenard L, Knoche A, Haas H, Huston JP, Schwarting RK (2001) Dopaminergic effects of histamine administration in the nucleus accumbens and the impact of H1-receptor blockade. Neuropharmacology 40:624–633

    Article  PubMed  CAS  Google Scholar 

  • Glantz S (1997) A primer of biostatistics, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomammillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130

    Article  PubMed  CAS  Google Scholar 

  • Hasenohrl RU, Kuhlen A, Frisch C, Galosi R, Brandao ML, Huston JP (2001) Comparison of intra-accumbens injection of histamine with histamine H1-receptor antagonist chlorpheniramine in effects on reinforcement and memory parameters. Behav Brain Res 124:203–211

    Article  PubMed  CAS  Google Scholar 

  • Huston JP, Wagner U, Hasenohrl RU (1997) The tuberomammillary nucleus projections in the control of learning, memory and reinforcement processes: evidence for an inhibitory role. Behav Brain Res 83:97–105

    Article  PubMed  CAS  Google Scholar 

  • Hyytiä P, Bäckström P, Piepponen P, Ahtee L (2003) Histamine H3-receptor antagonist thioperamide potentiates behavioral effets of cocaine. Eur J Pharm Sci 19:S21–S24

    Article  Google Scholar 

  • Ikemoto S (2005) The supramammillary nucleus mediates primary reinforcement via GABA(A) receptors. Neuropsychopharmacology 30:1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Ito C, Onodera K, Watanabe T, Sato M (1997) Effects of histamine agents on methamphetamine-induced stereotyped behavior and behavioral sensitization in rats. Psychopharmacology (Berl) 130:362–367

    Article  CAS  Google Scholar 

  • Itoh Y, Nishibori M, Oishi R, Saeki K (1984) Neuronal histamine inhibits methamphetamine-induced locomotor hyperactivity in mice. Neurosci Lett 48:305–309

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW (1982) Histamine-induced arousal in the conscious and pentobarbital-pretreated rat. J Pharmacol Exp Ther 222:37–42

    PubMed  CAS  Google Scholar 

  • Kubota Y, Ito C, Sakurai E, Sakurai E, Watanabe T, Ohtsu H (2002) Increased methamphetamine-induced locomotor activity and behavioral sensitization in histamine-deficient mice. J Neurochem 83:837–845

    Article  PubMed  CAS  Google Scholar 

  • Lapa GB, Mathews TA, Harp J, Budygin EA, Jones SR (2005) Diphenylpyraline, a histamine H1 receptor antagonist, has psychostimulant properties. Eur J Pharmacol 506:237–240

    Article  PubMed  CAS  Google Scholar 

  • Leurs R, Bakker RA, Timmerman H, de Esch IJ (2005) The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 4:107–120

    Article  PubMed  CAS  Google Scholar 

  • Masukawa Y, Suzuki T, Misawa M (1993) Differential modification of the rewarding effects of methamphetamine and cocaine by opioids and antihistamines. Psychopharmacology (Berl) 111:139–143

    Article  CAS  Google Scholar 

  • Matsunaga K, Sato T, Shuto H, Tsuruta Y, Suemaru K, Gomita Y, Oishi R (1998) Inhibition of neuronal dopamine uptake by some antiallergic drugs. Eur J Pharmacol 350:165–169

    Article  PubMed  CAS  Google Scholar 

  • Morisset S, Pilon C, Tardivel-Lacombe J, Weinstein D, Rostene W, Betancur C, Sokoloff P, Schwartz JC, Arrang JM (2002) Acute and chronic effects of methamphetamine on tele-methylhistamine levels in mouse brain: selective involvement of the D(2) and not D(3) receptor. J Pharmacol Exp Ther 300:621–628

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428

    Article  PubMed  ADS  CAS  Google Scholar 

  • Naylor RJ, Costall B (1971) The relationship between the inhibition of dopamine uptake and the enhancement of amphetamine stereotypy. Life Sci I 10:909–915

    Article  PubMed  CAS  Google Scholar 

  • Ohtsu H, Tanaka S, Terui T, Hori Y, Makabe-Kobayashi Y, Pejler G, Tchougounova E et al (2001) Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett 502:53–56

    Article  PubMed  CAS  Google Scholar 

  • Oishi R, Shishido S, Yamori M, Saeki K (1994) Comparison of the effects of eleven histamine H1-receptor antagonists on monoamine turnover in the mouse brain. Naunyn Schmiedebergs Arch Pharmacol 349:140–144

    Article  PubMed  CAS  Google Scholar 

  • Okuda T, Ito Y, Nakagawa N, Hishinuma T, Tsukamoto H, Iwabuchi K, Watanabe T, Kitaichi K, Goto J, Yanai K (2004) Drug interaction between methamphetamine and antihistamines: behavioral changes and tissue concentrations of methamphetamine in rats. Eur J Pharmacol 505:135–144

    Article  PubMed  CAS  Google Scholar 

  • Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep–wake control. J Neurosci 22:7695–7711

    PubMed  CAS  Google Scholar 

  • Privou C, Knoche A, Hasenohrl RU, Huston JP (1998) The H1- and H2-histamine blockers chlorpheniramine and ranitidine applied to the nucleus basalis magnocellularis region modulate anxiety and reinforcement related processes. Neuropharmacology 37:1019–1032

    Article  PubMed  CAS  Google Scholar 

  • Sannerud CA, Kaminski BJ, Griffiths RR (1995) Maintenance of H1 antagonists self-injection in baboons. Exp Clin Psychopharmacol 3:26–32

    Article  CAS  Google Scholar 

  • Shishido S, Oishi R, Saeki K (1991) In vivo effects of some histamine H1-receptor antagonists on monoamine metabolism in the mouse brain. Naunyn Schmiedebergs Arch Pharmacol 343:185–189

    Article  PubMed  CAS  Google Scholar 

  • Stephens DN, Mead AN, Ripley TL (2002) Studying the neurobiology of stimulant and alcohol abuse and dependence in genetically manipulated mice. Behav Pharmacol 13:327–345

    PubMed  CAS  Google Scholar 

  • Suzuki T, Masukawa Y, Misawa M (1990) Drug interactions in the reinforcing effects of over-the-counter cough syrups. Psychopharmacology (Berl) 102:438–442

    Article  CAS  Google Scholar 

  • Suzuki T, Masukawa Y, Shiozaki Y, Misawa M (1991) Potentiation of pentazocine conditioned place preference by tripelennamine in rats. Psychopharmacology (Berl) 105:9–12

    Article  CAS  Google Scholar 

  • Suzuki T, Takamori K, Misawa M, Onodera K (1995) Effects of the histaminergic system on the morphine-induced conditioned place preference in mice. Brain Res 675:195–202

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Mori T, Tsuji M, Nomura M, Misawa M, Onodera K (1999) Evaluation of the histamine H1-antagonist-induced place preference in rats. Jpn J Pharmacol 81:332–338

    Article  PubMed  CAS  Google Scholar 

  • Wagner U, Segura-Torres P, Weiler T, Huston JP (1993a) The tuberomammillary nucleus region as a reinforcement inhibiting substrate: facilitation of ipsihypothalamic self-stimulation by unilateral ibotenic acid lesions. Brain Res 613:269–274

    Article  PubMed  CAS  Google Scholar 

  • Wagner U, Weiler HT, Huston JP (1993b) Amplification of rewarding hypothalamic stimulation following a unilateral lesion in the region of the tuberomammillary nucleus. Neuroscience 52:927–932

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Zachariou V, Caldarone BJ, Weathers-Lowin A, George TP, Elsworth JD, Roth RH, Changeux JP, Picciotto MR (2001) Nicotine receptor inactivation decreases sensitivity to cocaine. Neuropsychopharmacology 24:576–589

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Zimmermann P, Privou C, Huston JP (1999) Differential sensitivity of the caudal and rostral nucleus accumbens to the rewarding effects of a H1-histaminergic receptor blocker as measured with place-preference and self-stimulation behavior. Neuroscience 94:93–103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The present research was supported by the Belgian National Funds for Scientific Research (FNRS), grant F.R.F.C. N°2.4533.02F to Ezio Tirelli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Tirelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brabant, C., Quertemont, E., Anaclet, C. et al. The psychostimulant and rewarding effects of cocaine in histidine decarboxylase knockout mice do not support the hypothesis of an inhibitory function of histamine on reward. Psychopharmacology 190, 251–263 (2007). https://doi.org/10.1007/s00213-006-0603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0603-0

Keywords

Navigation