Skip to main content
Log in

Nicotine withdrawal and κ-opioid receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The synthesis and release of dynorphin are increased in the caudate/putamen (CPU) and nucleus accumbens (NAc) of nicotine-withdrawn mice, suggesting a role in the nicotine abstinence syndrome.

Objectives

This study aims to investigate the consequences of enhanced dynorphinergic activity on κ-opioid receptor (KOPr) expression, coupling, and function in CPU and NAc following chronic nicotine administration and withdrawal.

Methods

Mice were injected with nicotine-free base 2 mg/kg, or saline, sc, four times daily for 14 days and experiments performed at 24, 48, and 72 h after drug discontinuation. KOPr binding and mRNA were evaluated by [3H]-U69,593 autoradiography and in situ hybridization. KOPr coupling and function were investigated by agonist (U69-593)-stimulated [35S]GTPγS binding autoradiography and inhibition of adenylyl cyclase activity.

Results

KOPr binding density and mRNA in CPU and NAc were unaltered during nicotine withdrawal; however, KPOr mRNA was increased in midbrain. U69,593-stimulated [35S]GTPγS binding was attenuated in both striatal regions, especially in NAc. In NAc shell and core, stimulated [35S]GTPγS binding was significantly decreased by 24 h and further declined over the 72 h observation period. In CPU, significant changes were observed only at 72 h. Basal adenylyl cyclase activity decreased early during nicotine withdrawal and recovered by 48 h. Stimulation with U69,593 failed to inhibit adenylyl cyclase activity at all times studied.

Conclusions

These observations suggest that KOPr coupling and function are impaired in NAc and CPU during nicotine withdrawal, and imply receptor desensitization. KOPr desensitization might be a mechanism to ameliorate aversive behavioral symptoms, as nicotine withdrawal evolves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appleyard SM, Patterson TA, Jin WZ, Chavkin C (1997) Agonist-induced phosphorylation of the kappa-opioid receptor. J Neurochem 69:2405–2412

    CAS  PubMed  Google Scholar 

  • Appleyard SM, Celver J, Pineda V, Kovoor A, Wayman GA, Chavkin C (1999) Agonist-dependent desensitization of the kappa opioid receptor by G protein receptor kinase and beta-arrestin. J Biol Chem 274:23802–23807

    Article  CAS  PubMed  Google Scholar 

  • Avidor-Reiss T, Nevo I, Saya D, Bayewitch M, Vogel Z (1997) Opiate-induced adenylyl cyclase superactivation is isoenzyme-specific. J Biol Chem 272:5040–5047

    Article  CAS  PubMed  Google Scholar 

  • Bals-Kubik R, Ableiter A, Herz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    CAS  PubMed  Google Scholar 

  • Berrendero F, Kieffer BL, Maldonado R (2002) Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in μ-opioid receptor knock-out mice. J Neurosci 22:10935–10940

    CAS  PubMed  Google Scholar 

  • Berrendero F, Mendizabal V, Robledo P, Galeote L, Bilkei-Gorzo A, Zimmer A, Maldonado R (2005) Nicotine-induced antinociception, rewarding effects, and physical dependence are decreased in mice lacking the preproenkephalin gene. J Neurosci 25:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Beguin C, DiNieri JA, Bauman MH, Richards MR, Todtenkopf MS, Rotham RB, Maz Z, Lee D-Y-W, Cohen BM (2006) Depressive like effects of the κ-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther 316:440–447

    Article  CAS  PubMed  Google Scholar 

  • Chern Y (2000) Regulation of adenyly cyclase in the central nervous system. Cell Signal 12:195–204

    Article  CAS  PubMed  Google Scholar 

  • Dhatt R, Gudehithlu KP, Wemlinger TA, Tejwani GA, Neff NH, Hadjiconstantinou M (1995) Preproenkephalin mRNA and methionine-enkephalin content are increased in mouse striatum after treatment with nicotine. J Neurochem 64:1878–1883

    CAS  PubMed  Google Scholar 

  • Damaj MI, Kao W, Martin BR (2003) Characterization of spontaneous and precipitated nicotine withdrawal in mouse. J Pharmacol Exp Ther 307:526–534

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    PubMed  Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79

    Article  CAS  PubMed  Google Scholar 

  • Foulds J, Stapelton JA, bell N, Swettenham J, Jarvis MJ, Russell MAH (1997) Mood and physiological effects of subcutaneous nicotine in smokers and never smokers. Drug Alcohol Depend 44:105–115

    Article  CAS  PubMed  Google Scholar 

  • Galeote L, Maldonado R, Berrendero F (2008) Involvement of kappa/dynorphin system in the development of tolerance to nicotine-induced antinociception. J Neurochem 105:1358–1368

    Article  CAS  PubMed  Google Scholar 

  • Galeote L, Berrendero F, Bura SA, Zimmer A, Maldonado R (2009) Prodynorphin gene disruption increases the sensitivity to nicotine self-administration in mice. Int J Neuropsychopharmacol 12:615–625

    Article  CAS  PubMed  Google Scholar 

  • Gommans J, Stolerman IP, Shoaib M (2000) Antagonism of the discriminative and aversive stimulus properties of nicotine in C57Bl/6J mice. Neuropharmacology 39:2840–2847

    Article  CAS  PubMed  Google Scholar 

  • Happe HK, Bylund DB, Murrin LC (2001) Agonist-stimulated [35S]GTP gamma S autoradiography: optimization for high sensitivity. Eur J Pharmacol 422:1–13

    Article  CAS  PubMed  Google Scholar 

  • Harrison C, Traynor JR (2003) The [35S]GTPγS binding assay: approaches and applications in pharmacology. Life Sci 74:489–508

    Article  CAS  PubMed  Google Scholar 

  • Heishman SJ, Hennigfield JF (2000) Tolerance to repeated nicotine administration on performance, subjective, and physiological response to nonsmokers. Psychopharmacology 152:321–333

    Article  CAS  PubMed  Google Scholar 

  • Hughes JR, Gust SW, Skoog K, Keenan RM, Fenwick JW (1991) Symptoms of tobacco withdrawal. A replication and extension. Arch General Psych 48:52–59

    CAS  Google Scholar 

  • Ise Y, Narita M, Nagase H, Suzuki T (2000) Modulation of opioidergic system on mecamylamine-precipitated nicotine-withdrawal aversion in rats. Psychopharmacology 151:49–54

    Article  CAS  PubMed  Google Scholar 

  • Isola R, Vogelsberg V, Wemlinger TA, Neff NH, Hadjiconstantinou M (1999) Nicotine abstinence in the mouse. Brain Res 850:189–196

    Article  CAS  PubMed  Google Scholar 

  • Isola R, Duchemin A-M, Tejwani GA, Neff NH, Hadjiconstantinou M (2000) Glutamate receptors participate in the nicotine-induced changes of met-enkephalin in striatum. Brain Res 878:72–78

    Article  CAS  PubMed  Google Scholar 

  • Isola R, Zhang H, Duchemin A-M, Tejwani GA, Neff NH, Hadjiconstantinou M (2002) Met-enkephalin and preproenkephalin mRNA changes in the striatum of the nicotine abstinense mouse. Neurosci Lett 325:67–71

    Article  CAS  PubMed  Google Scholar 

  • Isola R, Zhang H, Tejwani GA, Neff NH, Hadjiconstantinou M (2008) Dynorphin and prodynorphin mRNA changes in the striatum during nicotine withdrawal. Synapse 62:448–455

    Article  CAS  PubMed  Google Scholar 

  • Isola R, Zhang H, Tejwani GA, Neff NH, Hadjiconstantinou M (2009) Acute nicotine changes dynorphin and prodynorphin mRNA in the striatum. Psychopharmacology 201:507–516

    Article  CAS  PubMed  Google Scholar 

  • Izenwasser S, Buzas B, Cox BM (1993) Differential regulation of adenylyl cyclase activity by mu and delta opioids in rat caudate-putamen and nucleus accumbens. J Pharmacol Exp Ther 267:145–152

    CAS  PubMed  Google Scholar 

  • Kenny PJ, Markou A (2001) Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 70:531–549

    Article  CAS  PubMed  Google Scholar 

  • Kim K-S, Lee K-W, Im J-Y, Yoo JY, Kim S-W, Lee J-K, Nestler EJ, Han P-L (2006) Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine action. PNAS 103:3908–3913

    Article  CAS  PubMed  Google Scholar 

  • Kitchen I, Slowe SJ, Matthes HWD, Kieffer B (1997) Quantitative autoradiographic mapping of mu-, delta- and kappa-opioid receptors in knockout mice lacking the mu opioid receptor gene. Brain Res 778:73–88

    Article  CAS  PubMed  Google Scholar 

  • Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system. J Neurosci 28:407–414

    Article  CAS  PubMed  Google Scholar 

  • Liu-Chen L-Y (2004) Agonist-induced regulation and trafficking of κ opioid receptors. Life Sci 75:511–536

    Article  CAS  PubMed  Google Scholar 

  • Mague SD, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC Jr, Jones RM, Portoghese PS, Carlezon WA Jr (2003) Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther 305:323–330

    Article  CAS  PubMed  Google Scholar 

  • Malin DH, Lake JR, Newlin-Maultsby P, Roberts LK, Lanier JG, Carter VA, Cunningham JS, Wilson OB (1992) Rodent model of nicotine abstinence syndrome. Pharmacol Biochem Behav 43:779–784

    Article  CAS  PubMed  Google Scholar 

  • Malin DH, Lake RJ, Carter VA, Cunningham JS, Wilson OB (1993) Naloxone precipitates nicotine abstinence syndrome in the rat. Psychopharmacology 112:339–342

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JP, Marton-Popovici M, Chavkin C (2003a) κ-Opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 23:5674–5683

    CAS  PubMed  Google Scholar 

  • McLaughlin JP, Xu M, Mackie K, Chavkin C (2003b) Phosphorylation of a carboxyl-terminal serine within the kappa opioid receptor produces desensitization and internalization. J Biol Chem 278:34631–34640

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JP, Myers LC, Zarek PE, Caron MG, Lefkowitz RJ, Czyzyk TA, Pintar JE, Chavkin C (2004) Prolonged kappa opioid receptor phosphorylation mediated by G-protein receptor kinase underlies sustained analgesic tolerance. J Biol Chem 279:1810–1818

    Article  CAS  PubMed  Google Scholar 

  • Meshul CK, McGinty JF (2000) Kappa opioid receptor immunoreactivity in the nucleus accumbens and caudate-putamen is primarily associated with synaptic vesicles in axons. Neuroscience 96:91–99

    Article  CAS  PubMed  Google Scholar 

  • Newton SS, Thome J, Wallace TL, Shirayama Y, Schlosinger L, Sakai N, Chen J, Neve R, Nestler EJ (2002) Inhibition of cAMP response element-binding or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J Neurosci 22:10883–10890

    CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin BL (2001) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233:774–776

    Article  CAS  PubMed  Google Scholar 

  • Risinger FO, Oakes RA (1995) Nicotine-induced conditioned place preference and conditioned taste aversion in mice. Pharmacol Biochem Behav 51:457–461

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer C (2009) 30 years of dynorphin—new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 123(3):353–370

    Article  CAS  PubMed  Google Scholar 

  • Shippenberg TS, Chefer VI, Zapata A, Heidbreder CA (2001) Modulation of the behavioral and neurochemical effects of psychostimulants by κ-opioid receptor systems. Ann NY Acad Sci 937:50–73

    Article  CAS  PubMed  Google Scholar 

  • Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacology & Therapeutics 116:306–321

    Article  CAS  Google Scholar 

  • Shirayama Y, Ishida H, Iwata M, Hazama G, Kawahara R, Duman RS (2004) Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces anti-depressant-like effects. J Neurochem 90:1258–1268

    Article  CAS  PubMed  Google Scholar 

  • Sim LJ, Selley DE, Childers SR (1995) In vitro autoradiography of receptor-mediated G-proteins in rat brain by agonist-stimulated guanylyl 5’-[gamma-[35S]thio]triphosphate binding. Proc Nat Acad Sci 92:7242–7246

    Article  CAS  PubMed  Google Scholar 

  • Simonin F, Valverde O, Smadja C, Slowe S, Kitchen I, Dierich A, Le Meur M, Roques BP, Maldonado R, Kieffer BL (1998) Disruption of the κ-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological action of the selective κ-agonist U-50,488H and attenuates morphine withdrawal. The EMBO Journal 17:886–897

    Article  CAS  PubMed  Google Scholar 

  • Skjei KL, Markou A (2003) Effects of repeated withdrawal episodes, nicotine dose, and duration of nicotine exposure on the severity and duration of nicotine withdrawal in rats. Psychopharmacology 168:280–292

    Article  CAS  PubMed  Google Scholar 

  • Spanagel R (1995) Modulation of drug-induced sensitization processes by endogenous opioid systems. Behavioural Brain Res 70:37–49

    Article  CAS  Google Scholar 

  • Svingos A, Colago EEO (2002) κ-Opioid and NMDA glutamate receptors are differentially targeted within the rat medial prefrontal cortex. Brain Res 946:262–271

    Article  CAS  PubMed  Google Scholar 

  • Svingos A, Colago EEO, Pickel V (1999) Cellular sites for dynorphin activation of κ-opioid receptors in the rat nucleus accumbens shell. J Neurosci 19:1804–1813

    CAS  PubMed  Google Scholar 

  • Svingos A, Chavkin C, Colago EE, Pickel VM (2001) Major coexpression of kappa-opioid receptors and the dopamine transporter in nucleus accumbens axonal profiles. Synapse 42:185–192

    Article  CAS  PubMed  Google Scholar 

  • Taussig R, Tang WJ, Hepler JR, Gilman AG (1994) Distinct patterns of bidirectional regulation of mammalian adenyly cyclases. J Biol Chem 269:6093–6100

    CAS  PubMed  Google Scholar 

  • Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA Jr (2004) Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology 172:463–470

    Article  CAS  PubMed  Google Scholar 

  • Tomasiewicz HC, Todtenkopf MS, Chartoff EH, Cohen BM, Carlezon WA Jr (2008) The kappa-opioid agonist U69, 593 blocks cocaine-induced enhancement of brain stimulation reward. Biol Pscychiatry 64:982–988

    Article  CAS  Google Scholar 

  • Visel A, Alvarez-Bolado G, Thaller C, Eichelle G (2006) Comprehensive analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain. J Comp Neurol 496:684–697

    Article  CAS  PubMed  Google Scholar 

  • Waldhoer M, Barlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Van Bockstaele EJ, Liu-Chen L-Y (2008) In vivo trafficking of endogenous opioid receptors. Life Sci 83:693–699

    Article  CAS  PubMed  Google Scholar 

  • Watkins SS, Stinus L, Koob GF, Markou A (2000) Reward and somatic changes during precipitated nicotine withdrawal in rats: centrally and peripherally mediated effects. J Pharmacol Exp Ther 292:1053–1064

    CAS  PubMed  Google Scholar 

  • Xia Y-F, he L, Whistler JL, Hjeilmstad GO (2008) Acute methamphetamine exposure selectively desensitizes κ-opioid receptors in the nucleus accumbens. Neuropsychopharmacology 33:892–900

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Wang X, Partilla JS, Bishop-Mathis K, Benaderet TS, Dersch CM, Simpson DS, Prisinzano TE, Rothman RB (2008) Differential effects of opioid agonists on G protein expression in CHO cells expressing cloned human opioid receptors. Brain Res Bulletin 77:49–54

    Article  CAS  Google Scholar 

  • Xue Y, Domino EF (2008) Tobacco/nicotine and endogenous brain opioids. Prog Neuropsychopharmacol Biol Psychiatry 32(5):1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Zimmer A, Valjent E, Konig M, Zimmer AM, Robledo P, Hahn H, Valverdre O, Maldonado R (2001) Absence of Δ-9-tetrahydrocannabinol dysphoric effects in dynorphin-deficient mice. J Neurochem 21:9499–9505

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Hadjiconstantinou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, M.J., Zhang, H., Neff, N.H. et al. Nicotine withdrawal and κ-opioid receptors. Psychopharmacology 210, 221–229 (2010). https://doi.org/10.1007/s00213-009-1674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1674-5

Keywords

Navigation