Skip to main content

Advertisement

Log in

The cannabinoid CB2 receptor is necessary for nicotine-conditioned place preference, but not other behavioral effects of nicotine in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Whereas cannabinoid CB1 receptors have long been known to contribute to the rewarding effects and dependence liability of many drugs of abuse, recent studies have implicated the involvement of cannabinoid CB2 receptors.

Objective

Here, we evaluated the role of CB2 receptors in the rewarding properties of nicotine, as assessed in the conditioned place preference (CPP) paradigm and mecamylamine-precipitated withdrawal in nicotine dependent mice.

Methods

Using complementary pharmacological and genetic approaches, we investigated the involvement of CB2 receptors in nicotine- and cocaine-induced CPP in mice and mecamylamine-precipitated withdrawal in nicotine-dependent mice. We also determined whether deletion of CB2 receptors affects nicotine-induced hypothermia and hypoalgesia.

Results

Nicotine-induced (0.5 mg/kg) CPP was completely blocked by selective CB2 antagonist, SR144528 (3 mg/kg) in wild-type mice, and was absent in CB2 (−/−) mice. Conversely, the CB2 receptor agonist, O-1966 (1, 3, 5, 10, 20 mg/kg) given in combination with a subthreshold dose of nicotine (0.1 mg/kg) elicited a place preference. In contrast, O-1966 (20 mg/kg) blocked cocaine (10 mg/kg)-induced CPP in wild type mice, while CB2 (−/−) mice showed unaltered cocaine CPP. CB2 (+/+) and (−/−) nicotine-dependent mice showed almost identical precipitated withdrawal responses and deletion of CB2 receptor did not alter acute somatic effects of nicotine.

Conclusions

Collectively, these results indicate that CB2 receptors are required for nicotine-induced CPP in the mouse, while it is not involved in nicotine withdrawal or acute effects of nicotine. Moreover, these results suggest that CB2 receptors play opposing roles in nicotine- and cocaine-induced CPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CNS:

central nervous system

CPP:

conditioned place preference

DA:

dopamine

i.p.:

intraperitoneal injection

NAc:

nucleus accumbens

s.c.:

subcutaneous injection

VTA:

ventral tegmental area

References

  • Adamczyk P, Miszkiel J, McCreary AC, Filip M, Papp M, Przegaliński E (2012) The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats. Brain Res 1444:45–54

    Article  PubMed  CAS  Google Scholar 

  • Alajaji M, Bowers MS, Knackstedt L, Damaj MI (2013) Effects of the beta-lactam antibiotic ceftriaxone on nicotine withdrawal and nicotine-induced reinstatement of preference in mice. Psychopharmacology (Berlin) (in press)

  • AlSharari SD, Akbarali HI, Abdullah RA, Shahab O, Auttachoat W, Ferreira GA, White KL, Lichtman AH, Cabral GA, Damaj MI (2013) Novel insights on the effect of nicotine in a murine colitis model. J Pharmacol Exp Ther 344(1):207–217

    Article  PubMed  CAS  Google Scholar 

  • Aracil-Fernández A, Trigo JM, García-Gutiérrez MS, Ortega-Álvaro A, Ternianov A, Navarro D, Robledo P, Berbel P, Maldonado R, Manzanares J (2012) Decreased cocaine motor sensitization and self-administration in mice overexpressing cannabinoid CB2 receptors. Neuropsychopharmacology 37(7):1749–1763

    Article  PubMed  Google Scholar 

  • Atwood BK, Mackie K (2010) CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 160(3):467–479

    Article  PubMed  CAS  Google Scholar 

  • Atwood BK, Straiker A, Mackie K (2012) CB2 cannabinoid receptors inhibit synaptic transmission when expressed in cultured autaptic neurons. Neuropharmacology 63(4):514–523

    Article  PubMed  CAS  Google Scholar 

  • Baldwin PR, Alanis R, Salas R (2011) The Role of the Habenula in Nicotine Addiction. J Addict Res Ther S1(2):002

    PubMed  Google Scholar 

  • Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153(1):31–43

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Valone JM, Bevins RA (1999) Locomotion and conditioned place preference produced by acute intravenous amphetamine: role of dopamine receptors and individual differences in amphetamine self-administration. Psychopharmacology 143:39–46

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL (2008) Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther 83(4):531–541

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL (2010) Nicotine addiction. N Engl J Med 362(24):2295–2303

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: 'liking', 'wanting', and learning. Curr Opin Pharmacol 9(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Cabral GA, Marciano-Cabral F (2005) Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol 78(6):1192–1197

    Article  PubMed  CAS  Google Scholar 

  • Castañé A, Berrendero F, Maldonado R (2005) The role of the cannabinoid system in nicotine addiction. Pharmacol Biochem Behav 81:381–386

    Article  PubMed  Google Scholar 

  • Changeux JP (2010) Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci 11(6):389–401

    Article  PubMed  CAS  Google Scholar 

  • Chaperon F, Soubrié P, Puech AJ, Thiébot MH (1998) Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology (Berl) 135(4):324–332

    Article  CAS  Google Scholar 

  • Cohen C, Perrault G, Voltz C, Steinberg R, Soubrié P (2002) SR141716, a central cannabinoid (CB(1)) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav Pharmacol 13(5–6):451–463

    Article  PubMed  CAS  Google Scholar 

  • Cohen C, Kodas E, Griebel G (2005a) CB1 receptor antagonists for the treatment of nicotine addiction. Pharmacol Biochem Behav 81(2):387–395

    Article  PubMed  CAS  Google Scholar 

  • Cohen C, Perrault G, Griebel G, Soubrié P (2005b) Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology 30(1):145–155

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 98:9371–9376

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Saghatelian A, Hawkins EG, Clement AB, Bracey MH, Lichtman AH (2004) Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc Natl Acad Sci U S A 101(29):10821–10826

    Article  PubMed  CAS  Google Scholar 

  • D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79

    Google Scholar 

  • Damaj MI, Glassco W, Aceto MD, Martin BR (1999) Antinociceptive and pharmacological effects of metanicotine, a selective nicotinic agonist. J Pharmacol Exp Ther 291:390–388

    PubMed  CAS  Google Scholar 

  • Damaj MI, Kao W, Martin BR (2003) Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. J Pharmacol Exp Ther 307(2):526–534

    Article  PubMed  CAS  Google Scholar 

  • Damaj MI, Siu EC, Sellers EM, Tyndale RF, Martin BR (2007) Inhibition of nicotine metabolism by methoxysalen: Pharmacokinetic and pharmacological studies in mice. J Pharmacol Exp Ther 320(1):250–257

    Google Scholar 

  • Deroche V, Le Moal M, Piazza PV (1999) Cocaine self-administration increases the incentive motivational properties of the drug in rats. Eur J Neurosci 11:2731–2736

    Article  PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo V (2009) The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol Res 60(2):77–84

    Article  PubMed  Google Scholar 

  • Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 99(16):10819–10824

    Article  PubMed  CAS  Google Scholar 

  • Fattore L, Martellotta MC, Cossu G, Mascia MS, Fratta W (1999) CB1 cannabinoid receptor agonist WIN 55,212-2 decreases intravenous cocaine self-administration in rats. Behav Brain Res 104(1–2):141–146

    Article  PubMed  CAS  Google Scholar 

  • Filip M, Gołda A, Zaniewska M, McCreary AC, Nowak E, Kolasiewicz W, Przegaliński E (2006) Involvement of cannabinoid CB1 receptors in drug addiction: effects of rimonabant on behavioral responses induced by cocaine. Pharmacol Rep 58(6):806–819

    PubMed  CAS  Google Scholar 

  • Gamaleddin I, Wertheim C, Zhu AZ, Coen KM, Vemuri K, Makryannis A, Goldberg SR, Le Foll B (2012a) Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking. Addict Biol 17(1):47–61

    Article  PubMed  CAS  Google Scholar 

  • Gamaleddin I, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B (2012b) Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self-administration and reinstatement of nicotine seeking. PLoS One 7(1):e29900

    Article  PubMed  CAS  Google Scholar 

  • García-Gutiérrez MS, Pérez-Ortiz JM, Gutiérrez-Adán A, Manzanares J (2010) Depression-resistant endophenotype in mice overexpressing cannabinoid CB2 receptors. Br J Pharmacol 160(7):1773–1784

    Article  PubMed  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071(1):10–23

    Article  PubMed  CAS  Google Scholar 

  • Grabus SD, Martin BR, Brown SE, Damaj MI (2006) Nicotine place preference in the mouse: influences of prior handling, dose and strain and attenuation by nicotinic receptor antagonists. Psychopharmacology (Berl) 184(3–4):456–463

    Article  CAS  Google Scholar 

  • Hnasko TS, Sotak BN, Palmiter RD (2007) Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J Neurosci 46:12484–12488

    Article  Google Scholar 

  • Jackson KJ, Martin BR, Changeux JP, Damaj MI (2008) Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther 325:302–312

    Article  PubMed  CAS  Google Scholar 

  • Jackson KJ, Chen X, Miles MF, Harenza J, Damaj MI (2011) The neuropeptide galanin and variants in the GalR1 gene are associated with nicotine dependence. Neuropsychopharmacology 36(11):2339–2348

    Article  PubMed  CAS  Google Scholar 

  • Kinsey SG, Mahadevan A, Zhao B, Sun H, Naidu PS, Razdan RK, Selley DE, Imad Damaj M, Lichtman AH (2011) The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects. Neuropharmacology 60(2–3):244–251

    Article  PubMed  CAS  Google Scholar 

  • Kota D, Martin BR, Robinson SE, Damaj MI (2007) Nicotine dependence and reward differ between adolescent and adult male mice. J Pharmacol Exp Ther 322:399–407

    Article  PubMed  CAS  Google Scholar 

  • Le Foll B, Goldberg SR (2004) Rimonabant, a CB1 antagonist, blocks nicotine-conditioned place preferences. Neuroreport 15(13):2139–2143

    Article  PubMed  Google Scholar 

  • Le Foll B, Forget B, Aubin HJ, Goldberg SR (2008) Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre-clinical and clinical studies. Addict Biol 13(2):239–252

    Article  PubMed  Google Scholar 

  • Luchicchi A, Lecca S, Carta S, Pillolla G, Muntoni AL, Yasar S, Goldberg SR, Pistis M (2010) Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors. Addict Biol 15(3):277–288

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Valverde O, Berrendero F (2006) Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 29(4):225–232

    Article  PubMed  CAS  Google Scholar 

  • Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O (2000) Cocaine, but not morphine, induces conditioned place preference and sensitization to locomotor responses in CB1 knockout mice. Eur J Neurosci 12(11):4038–4046

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564

    Article  PubMed  CAS  Google Scholar 

  • McCallum SE, Cowe MA, Lewis SW, Glick SD (2012) α3β4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo. Neuropharmacology 63(3):434–440

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM, Glass M, Pertwee RG (2007) Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences. Br J Pharmacol 152(5):583–593

    Article  PubMed  CAS  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50(1):83–90

    Article  PubMed  CAS  Google Scholar 

  • Merritt LL, Martin BR, Walters C, Lichtman AH, Damaj MI (2008) The endogenous cannabinoid system modulates nicotine reward and dependence. J Pharmacol Exp Ther 326(2):483–492

    Article  PubMed  CAS  Google Scholar 

  • Muldoon PP, Lichtman AH, Parsons LH, Damaj MI (2013) The role of fatty acid amide hydrolase inhibition in nicotine reward and dependence. Life Sci Life Sci 92:458–462

    Article  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65

    Article  PubMed  CAS  Google Scholar 

  • National Research Council of the National Academies, Institute for Laboratory Animal Research (2011) Guide for the care and use of laboratory animals, Eight Edition. The National Academies Press, Washington, D.C.

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536

    Article  PubMed  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Meozzi PA, Myers L, Perchuk A, Mora Z, Tagliaferro PA, Gardner E, Brusco A, Akinshola BE, Hope B, Lujilde J, Inada T, Iwasaki S, Macharia D, Teasenfitz L, Arinami T, Uhl GR (2008) Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects. PLoS One 3(2):e1640

    Article  PubMed  Google Scholar 

  • Parolaro D, Vigano D, Realini N, Rubino T (2007) Role of endocannabinoids in regulating drug dependence. Neuropsychiatr Dis Treat 3(6):711–721

    PubMed  CAS  Google Scholar 

  • Petersen DR, Norris KJ, Thompson JA (1984) A comparative study of the disposition of nicotine and its metabolites in three inbred strains of mice. Drug Metab Dispos 12(6):725–731

    PubMed  CAS  Google Scholar 

  • Pettit DA, Harrison MP, Olson JM, Spencer RF, Cabral GA (1998) Immunohistochemical localization of the neural cannabinoid receptor in rat brain. J Neurosci Res 51(3):391–402

    Article  PubMed  CAS  Google Scholar 

  • Ramirez SH, Haskó J, Skuba A, Fan S, Dykstra H, McCormick R, Reichenbach N, Krizbai I, Mahadevan A, Zhang M, Tuma R, Son YJ, Persidsky Y (2012) Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood–brain barrier dysfunction under inflammatory conditions. J Neurosci 32(12):4004–4016

    Article  PubMed  CAS  Google Scholar 

  • Scherma M, Panlilio LV, Fadda P, Fattore L, Gamaleddin I, Le Foll B, Justinová Z, Mikics E, Haller J, Medalie J, Stroik J, Barnes C, Yasar S, Tanda G, Piomelli D, Fratta W, Goldberg SR (2008) Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. J Pharmacol Exp Ther 327(2):482–490

    Article  PubMed  CAS  Google Scholar 

  • Solinas M, Goldberg SR, Piomelli D (2008) The endocannabinoid system in brain reward processes. Br J Pharmacol 154(2):369–383

    Article  PubMed  CAS  Google Scholar 

  • Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, Wichems C, Lesch KP, Murphy DL, Uhl GR (2001) Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci U S A 98(9):5300–5305

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Jarvis MJ (1995) The scientific case that nicotine is addictive. Psychopharmacology (Berl) 117:2–10

    Article  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215(1):89–97

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Munzar P, Goldberg SR (2000) Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci 3(11):1073–1074

    Article  PubMed  CAS  Google Scholar 

  • Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310(5746):329–332

    Article  PubMed  Google Scholar 

  • Vlachou S, Stamatopoulou F, Nomikos GG, Panagis G (2008) Enhancement of endocannabinoid neurotransmission through CB1 cannabinoid receptors counteracts the reinforcing and psychostimulant effects of cocaine. Int J Neuropsychopharmacol 11(7):905–923

    Article  PubMed  CAS  Google Scholar 

  • Walters CL, Brown S, Changeux JP, Martin B, Damaj MI (2006) The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology (Berl) 184(3–4):339–344

    Article  CAS  Google Scholar 

  • Wiley JL, Beletskaya ID, Ng EW, Dai Z, Crocker PJ, Mahadevan A, Razdan RK, Martin BR (2002) Resorcinol derivatives: a novel template for the development of cannabinoid CB(1)/CB(2) and CB(2)-selective agonists. J Pharmacol Exp Ther 301(2):679–689

    Article  PubMed  CAS  Google Scholar 

  • Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL (2011) Brain cannabinoid CB2 receptors modulate cocaine's actions in mice. Nat Neurosci 14(9):1160–1166

    Article  PubMed  CAS  Google Scholar 

  • Yu LL, Zhou SJ, Wang XY, Liu JF, Xue YX, Jiang W, Lu L (2011) Effects of cannabinoid CB1 receptor antagonist rimonabant on acquisition and reinstatement of psychostimulant reward memory in mice. Behav Brain Res 217(1):111–116

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Martin BR, Adler MW, Razdan RK, Jallo JI, Tuma RF (2007) Cannabinoid CB(2) receptor activation decreases cerebral infarction in a mouse focal ischemia/reperfusion model. J Cereb Blood Flow Metab 27(7):1387–1396

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Drug Abuse grant DA-05274 to MID, P01DA009789, and P50DA005274. The authors thank Cindy Evans and Tie Han for their technical assistance with this study. There are no conflicts of interest to disclose for this research. All experiments comply with the current laws of USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogna M. Ignatowska-Jankowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatowska-Jankowska, B.M., Muldoon, P.P., Lichtman, A.H. et al. The cannabinoid CB2 receptor is necessary for nicotine-conditioned place preference, but not other behavioral effects of nicotine in mice. Psychopharmacology 229, 591–601 (2013). https://doi.org/10.1007/s00213-013-3117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3117-6

Keywords

Navigation