Skip to main content

Advertisement

Log in

CB1 receptor antagonism blocks stress-potentiated reinstatement of cocaine seeking in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Under some conditions, stress, rather than directly triggering cocaine seeking, potentiates reinstatement to other stimuli, including a subthreshold cocaine dose. The mechanisms responsible for stress-potentiated reinstatement are not well defined. Endocannabinoid signaling is increased by stress and regulates synaptic transmission in brain regions implicated in motivated behavior.

Objectives

The objective of this study was to test the hypothesis that cannabinoid type 1 receptor (CB1R) signaling is required for stress-potentiated reinstatement of cocaine seeking in rats.

Methods

Following i.v. cocaine self-administration (2 h access/day) and extinction in male rats, footshock stress alone does not reinstate cocaine seeking but reinstatement is observed when footshock is followed by an injection of an otherwise subthreshold dose of cocaine (2.5 mg/kg, i.p.). CB1R involvement was tested by systemic administration of the CB1R antagonist AM251 (0, 1, or 3 mg/kg, i.p.) prior to testing for stress-potentiated reinstatement.

Results

Stress-potentiated reinstatement was blocked by both 1 and 3 mg/kg AM251. By contrast, AM251 only attenuated food-reinforced lever pressing at the higher dose (i.e., 3 mg/kg) and did not affect locomotor activity at either dose tested. Neither high-dose cocaine-primed reinstatement (10 mg/kg, i.p.) nor footshock stress-triggered reinstatement following long-access cocaine self-administration (6 h access/day) was affected by AM251 pretreatment. Footshock stress increased concentrations of both endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, in regions of the prefrontal cortex.

Conclusions

These findings demonstrate that footshock stress increases prefrontal cortical endocannabinoids and stress-potentiated reinstatement is CB1R-dependent, suggesting that CB1R is a potential therapeutic target for relapse prevention, particularly in individuals whose cocaine use is stress-related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamczyk P, Miszkiel J, McCreary AC, Filip M, Papp M, Przegalinski E (2012) The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats. Brain Res 1444:45–54

    Article  PubMed  CAS  Google Scholar 

  • Bellocchio L, Mancini G, Vicennati V, Pasquali R, Pagotto U (2006) Cannabinoid receptors as therapeutic targets for obesity and metabolic diseases. Curr Opin Pharmacol 6:586–591

    Article  PubMed  CAS  Google Scholar 

  • Blacktop JM, Seubert C, Baker DA, Ferda N, Lee G, Graf EN, Mantsch JR (2011) Augmented cocaine seeking in response to stress or CRF delivered into the ventral tegmental area following long-access self-administration is mediated by CRF receptor type 1 but not CRF receptor type 2. J Neurosci 31(31):11396–11403

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brusco A, Tagliaferro PA, Saez T, Onaivi ES (2008) Ultrastructural localization of neuronal brain CB2 cannabinoid receptors. Ann N Y Acad Sci 1139:450–457

    Article  PubMed  CAS  Google Scholar 

  • Buffalari DM, See RE (2009) Footshock stress potentiates cue-induced cocaine-seeking in an animal model of relapse. Physiol Behav 98:614–617

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Capriles N, Rodaros D, Sorge RE, Stewart J (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 168:66–74

    Article  CAS  Google Scholar 

  • Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370:1706–1713

    Article  PubMed  CAS  Google Scholar 

  • Clarke TK, Bloch PJ, Ambrose-Lanci LM, Ferraro TN, Berrettini WH, Kampman KM, Dackis CA, Pettinati HM, O’Brien CP, Oslin DW, Lohoff FW (2013) Further evidence for association of polymorphisms in the CNR1 gene with cocaine addiction: confirmation in an independent sample and meta-analysis. Addict Biol 18:702–708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Coffey SF, Saladin ME, Drobes DJ, Brady KT, Dansky BS, Kilpatrick DG (2002) Trauma and substance cue reactivity in individuals with comorbid posttraumatic stress disorder and cocaine or alcohol dependence. Drug Alcohol Depend 65:115–127

    Article  PubMed  Google Scholar 

  • de Bruin NM, Lange JH, Kruse CG, Herremans AH, Schoffelmeer AN, van Drimmelen M, De Vries TJ (2011) SLV330, a cannabinoid CB(1) receptor antagonist, attenuates ethanol and nicotine seeking and improves inhibitory response control in rats. Behav Brain Res 217:408–415

    Article  PubMed  Google Scholar 

  • De La Garza R 2nd, Ashbrook LH, Evans SE, Jacobsen CA, Kalechstein AD, Newton TF (2009) Influence of verbal recall of a recent stress experience on anxiety and desire for cocaine in non-treatment seeking, cocaine-addicted volunteers. Am J Addict 18:481–487

    Article  Google Scholar 

  • De Vries TJ, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J, Vanderschuren LJ, Schoffelmeer AN (2001) A cannabinoid mechanism in relapse to cocaine seeking. Nat Med 7:1151–1154

    Article  PubMed  Google Scholar 

  • De Vries TJ, Homberg JR, Binnekade R, Raaso H, Schoffelmeer AN (2003) Cannabinoid modulation of the reinforcing and motivational properties of heroin and heroin-associated cues in rats. Psychopharmacology (Berl) 168:164–169

    Article  Google Scholar 

  • De Vries TJ, de Vries W, Janssen MC, Schoffelmeer AN (2005) Suppression of conditioned nicotine and sucrose seeking by the cannabinoid-1 receptor antagonist SR141716A. Behav Brain Res 161:164–168

    Article  PubMed  Google Scholar 

  • Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    PubMed  CAS  Google Scholar 

  • Duncan E, Boshoven W, Harenski K, Fiallos A, Tracy H, Jovanovic T, Hu X, Drexler K, Kilts C (2007) An fMRI study of the interaction of stress and cocaine cues on cocaine craving in cocaine-dependent men. Am J Addict 16:174–182

    Article  PubMed  Google Scholar 

  • Egertova M, Giang DK, Cravatt BF, Elphick MR (1998) A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc Biol Sci 265:2081–2085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Erb S, Shaham Y, Stewart J (1998) The role of corticotropin-releasing factor and corticosterone in stress- and cocaine-induced relapse to cocaine seeking in rats. J Neurosci 18(14):5529–5536

    PubMed  CAS  Google Scholar 

  • Fattore L, Spano S, Cossu G, Deiana S, Fadda P, Fratta W (2005) Cannabinoid CB(1) antagonist SR 141716A attenuates reinstatement of heroin self-administration in heroin-abstinent rats. Neuropharmacology 48:1097–1104

    Article  PubMed  CAS  Google Scholar 

  • Feltenstein MW, See RE (2006) Potentiation of cue-induced reinstatement of cocaine-seeking in rats by the anxiogenic drug yohimbine. Behav Brain Res 174:1–8

    Article  PubMed  CAS  Google Scholar 

  • Filip M, Golda A, Zaniewska M, McCreary AC, Nowak E, Kolasiewicz W, Przegalinski E (2006) Involvement of cannabinoid CB1 receptors in drug addiction: effects of rimonabant on behavioral responses induced by cocaine. Pharmacol Rep 58:806–19

  • Furnari M, Epstein DH, Phillips KA, Jobes ML, Kowalczyk WJ, Vahabzadeh M, Lin JL, Preston KL (2015) Some of the people, some of the time: field evidence for associations and dissociations between stress and drug use. Psychopharmacology (Berl) 232:3529–37

    Article  CAS  Google Scholar 

  • Graf EN, Hoks MA, Baumgardner J, Sierra J, Vranjkovic O, Bohr C, Baker DA, Mantsch JR (2011) Adrenal activity during repeated long-access cocaine self-administration is required for later CRF-induced and CRF-dependent stressor-induced reinstatement in rats. Neuropsychopharmacology 36:1444–1454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Graf EN, Wheeler RA, Baker DA, Ebben AL, Hill JE, McReynolds JR, Robble MA, Vranjkovic O, Wheeler DS, Mantsch JR, Gasser PJ (2013) Corticosterone acts in the nucleus accumbens to enhance dopamine signaling and potentiate reinstatement of cocaine seeking. J Neurosci 33:11800–11810

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Hill MN, Patel S, Campolongo P, Tasker JG, Wotjak CT, Bains JS (2010) Functional interactions between stress and the endocannabinoid system: from synaptic signaling to behavioral output. J Neurosci 30:14980–14986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hill MN, McLaughlin RJ, Pan B, Fitzgerald ML, Roberts CJ, Lee TT, Karatsoreos IN, Mackie K, Viau V, Pickel VM, McEwen BS, Liu QS, Gorzalka BB, Hillard CJ (2011) Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J Neurosci 31:10506–10515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  PubMed  CAS  Google Scholar 

  • Jing L, Qiu Y, Zhang Y, Li JX (2014) Effects of the cannabinoid CB(1) receptor allosteric modulator ORG 27569 on reinstatement of cocaine- and methamphetamine-seeking behavior in rats. Drug Alcohol Depend 143:251–256

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kalivas PW, McFarland K (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl) 168:44–56

    Article  CAS  Google Scholar 

  • Kirkham TC, Tucci SA (2006) Endocannabinoids in appetite control and the treatment of obesity. CNS Neurol Disord Drug Targets 5:272–292

    Article  PubMed  CAS  Google Scholar 

  • Kupferschmidt DA, Klas PG, Erb S (2012) Cannabinoid CB1 receptors mediate the effects of corticotropin-releasing factor on the reinstatement of cocaine seeking and expression of cocaine-induced behavioural sensitization. Br J Pharmacol 167:196–206

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez-Moreno JA, Echeverry-Alzate V, Buhler KM (2012) The genetic basis of the endocannabinoid system and drug addiction in humans. J Psychopharmacol 26:133–143

    Article  PubMed  CAS  Google Scholar 

  • Mantsch JR, Goeders NE (1999) Ketoconazole does not block cocaine discrimination or the cocaine-induced reinstatement of cocaine-seeking behavior. Pharmacol Biochem Behav 64:65–73

    Article  PubMed  CAS  Google Scholar 

  • Mantsch JR, Yuferov V, Mathieu-Kia AM, Ho A, Kreek MJ (2004) Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacology (Berl) 175:26–36

    Article  CAS  Google Scholar 

  • Mantsch JR, Baker DA, Francis DM, Katz ES, Hoks MA, Serge JP (2008a) Stressor- and corticotropin releasing factor-induced reinstatement and active stress-related behavioral responses are augmented following long-access cocaine self-administration by rats. Psychopharmacology (Berl) 195:591–603

    Article  CAS  Google Scholar 

  • Mantsch JR, Baker DA, Serge JP, Hoks MA, Francis DM, Katz ES (2008b) Surgical adrenalectomy with diurnal corticosterone replacement slows escalation and prevents the augmentation of cocaine-induced reinstatement in rats self-administering cocaine under long-access conditions. Neuropsychopharmacology 33:814–826

    Article  PubMed  CAS  Google Scholar 

  • McFarland K, Davidge SB, Lapish CC, Kalivas PW (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–1560

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin RJ, Hill MN, Bambico FR, Stuhr KL, Gobbi G, Hillard CJ, Gorzalka BB (2012) Prefrontal cortical anandamide signaling coordinates coping responses to stress through a serotonergic pathway. Eur Neuropsychopharmacol 22:664–671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McLaughlin RJ, Hill MN, Dang SS, Wainwright SR, Galea LA, Hillard CJ, Gorzalka BB (2013) Upregulation of CB(1) receptor binding in the ventromedial prefrontal cortex promotes proactive stress-coping strategies following chronic stress exposure. Behav Brain Res 237:333–337

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McLaughlin RJ, Hill MN, Gorzalka BB (2014) A critical role for prefrontocortical endocannabinoid signaling in the regulation of stress and emotional behavior. Neurosci Biobehav Rev 42C:116–131

    Article  Google Scholar 

  • McReynolds JR, Pena DF, Blacktop JM, Mantsch JR (2014) Neurobiological mechanisms underlying relapse to cocaine use: contributions of CRF and noradrenergic systems and regulation by glucocorticoids. Stress 17:22–38

    Article  PubMed  CAS  Google Scholar 

  • Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL (2004) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 24:53–62

    Article  PubMed  CAS  Google Scholar 

  • Morena M, Roozendaal B, Trezza V, Ratano P, Peloso A, Hauer D, Atsak P, Trabace L, Cuomo V, McGaugh JL, Schelling G, Campolongo P (2014) Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training. Proc Natl Acad Sci U S A 111(51):18333–18338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Onaivi ES (2011) Commentary: functional neuronal CB2 cannabinoid receptors in the CNS. Curr Neuropharmacol 9:205–208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Rademacher DJ, Hillard CJ (2003) Differential regulation of the endocannabinoids anandamide and 2-arachidonoylglycerol in the limbic forebrain by dopamine receptor activity. J Pharmacol Exp Ther 306(3):880–888

    Article  PubMed  CAS  Google Scholar 

  • Pavon FJ, Araos P, Pastor A, Calado M, Pedraz M, Campos-Cloute R, Ruiz JJ, Serrano A, Blanco E, Rivera P, Suarez J, Romero-Cuevas M, Pujadas M, Vergara-Moragues E, Gornemann I, Torrens M, de la Torre R, Rodriguez de Fonseca F (2013) Evaluation of plasma-free endocannabinoids and their congeners in abstinent cocaine addicts seeking outpatient treatment: impact of psychiatric co-morbidity. Addict Biol 18:955–969

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    PubMed  CAS  Google Scholar 

  • Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids 66:101–121

    Article  PubMed  CAS  Google Scholar 

  • Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28:6046–6053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pettit DA, Harrison MP, Olson JM, Spencer RF, Cabral GA (1998) Immunohistochemical localization of the neural cannabinoid receptor in rat brain. J Neurosci Res 51:391–402

    Article  PubMed  CAS  Google Scholar 

  • Preston KL, Epstein DH (2011) Stress in the daily lives of cocaine and heroin users: relationship to mood, craving, relapse triggers, and cocaine use. Psychopharmacology (Berl) 218:29–37

    Article  CAS  Google Scholar 

  • Rademacher DJ, Meier SE, Shi L, Ho WS, Jarrahian A, Hillard CJ (2008) Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology 54:108–116

    Article  PubMed  CAS  Google Scholar 

  • Roberts CJ, Stuhr KL, Hillard CJ (2012) Swim stress differentially affects limbic contents of 2-arachidonoylglycerol and 2-oleoylglycerol. Neuroscience 204:74–82

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Brain Res Rev 33:13–33

    Article  PubMed  CAS  Google Scholar 

  • Sidhpura N, Parsons LH (2011) Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61:1070–1087

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Silvestri C, Di Marzo V (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 17:475–490

    Article  PubMed  CAS  Google Scholar 

  • Sinha R (2009) Modeling stress and drug craving in the laboratory: implications for addiction treatment development. Addict Biol 14:84–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughn LK, Mantsch JR, Vranjkovic O, Stroh G, Lacourt M, Kreutter M, Hillard CJ (2012) Cannabinoid receptor involvement in stress-induced cocaine reinstatement: potential interaction with noradrenergic pathways. Neuroscience 204:117–124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vranjkovic O, Gasser PJ, Gerndt CH, Baker DA, Mantsch JR (2014) Stress-induced cocaine seeking requires a beta-2 adrenergic receptor-regulated pathway from the ventral bed nucleus of the stria terminalis that regulates CRF actions in the ventral tegmental area. J Neurosci 34(37):12504–12514

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward SJ, Rosenberg M, Dykstra LA, Walker EA (2009) The CB1 antagonist rimonabant (SR141716) blocks cue-induced reinstatement of cocaine seeking and other context and extinction phenomena predictive of relapse. Drug Alcohol Depend 105:248–255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wenger T, Moldrich G, Furst S (2003) Neuromorphological background of cannabis addiction. Brain Res Bull 61:125–128

    Article  PubMed  CAS  Google Scholar 

  • Wiskerke J, Pattij T, Schoffelmeer AN, De Vries TJ (2008) The role of CB1 receptors in psychostimulant addiction. Addict Biol 13:225–238

    Article  PubMed  CAS  Google Scholar 

  • Xi ZX, Gilbert JG, Peng XQ, Pak AC, Li X, Gardner EL (2006) Cannabinoid CB1 receptor antagonist AM251 inhibits cocaine-primed relapse in rats: role of glutamate in the nucleus accumbens. J Neurosci 26:8531–8536

    Article  PubMed  CAS  Google Scholar 

  • Zuo L, Kranzler HR, Luo X, Covault J, Gelernter J (2007) CNR1 variation modulates risk for drug and alcohol dependence. Biol Psychiatry 62:616–626

    Article  PubMed  CAS  Google Scholar 

  • Zuo L, Kranzler HR, Luo X, Yang BZ, Weiss R, Brady K, Poling J, Farrer L, Gelernter J (2009) Interaction between two independent CNR1 variants increases risk for cocaine dependence in European Americans: a replication study in family-based sample and population-based sample. Neuropsychopharmacology 34:1504–1513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by NIH grant DA015758 to JR Mantsch and NIH grant DA038663 to JR Mantsch and CJ Hillard and by the Research and Education Component of the Advancing a Healthier Wisconsin Endowment at the Medical College of Wisconsin.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Mantsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McReynolds, J.R., Doncheck, E.M., Vranjkovic, O. et al. CB1 receptor antagonism blocks stress-potentiated reinstatement of cocaine seeking in rats. Psychopharmacology 233, 99–109 (2016). https://doi.org/10.1007/s00213-015-4092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4092-x

Keywords

Navigation