Skip to main content

Advertisement

Log in

Selective subunit antagonists suggest an inhibitory relationship between NR2B and NR2A-subunit containing N-methyl-d-aspartate receptors in hippocampal slices

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Glutamate receptors responding to N-methyl-d-aspartate (NMDA) are involved in neural development, excitotoxicity and neuronal plasticity. Each receptor includes at least two NR2 subunits. Here, we have examined the effects of selective antagonists of NR2A and NR2B subunits (NVP-AAM07 and Ro25-6981 respectively) on the effects of NMDA in the CA1 field of rat hippocampal slices. We have observed that Ro25-6981 potentiates, rather than blocks, the effects of NMD on field EPSPs and paired-pulse interactions (indicators of presynaptic effects) and on postsynaptic depolarisation in hippocampal slices. The NR2A subunit antagonist NVP-AAM077 blocks the effects of NMDA alone, or after potentiation by Ro25-6981. The potentiation of NMDA by Ro25-6981 was not prevented by staurosporine (protein kinase inhibitor), okadaic acid (an inhibitor of serine/threonine protein phosphatases) or anisomycin (protein synthesis inhibitor), but was prevented by cyclosporin A, which inhibits Ca2+/calmodulin-dependent phosphatase 2B [calcineurin]. NMDA-dependent long-term potentiation (LTP) induced by electrical stimulation was not prevented by Ro25-6981 but was prevented by selective blockade of the NR2A subunit. The results suggest that, at both presynaptic and postsynaptic sites in the rat hippocampus, NR2B-subunit-containing receptors limit NMDA receptor function by inhibitory restraint over NR2A-subunit-containing receptors, via calcineurin activation, and that LTP induction critically involves primarily receptors containing the NR2A subunit. Endogenous factors or drugs that modify this NR2B/NR2A interaction could have a major influence on synaptic transmission and plasticity in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A,B
Fig. 2A–D
Fig. 3A–C
Fig. 4
Fig. 5a–f
Fig. 6A–C
Fig. 7A,B

Similar content being viewed by others

References

  • Auberson YP, Allgeier H, Bischoff S, Lingenhoehl K, Moretti R, Schmutz M (2002) 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg Med Chem Lett 12:1099–1102

    CAS  PubMed  Google Scholar 

  • Bartrup JT, Stone TW (1990) Activation of NMDA receptor-coupled channels suppresses the inhibitory action of adenosine on hippocampal slices. Brain Res 530:330–334

    CAS  PubMed  Google Scholar 

  • Behan DP, Chalmers DT (2001) The use of constitutively active receptors for drug discovery at the G protein-coupled receptor gene pool. Curr Opin Drug Discov Dev 4:548–560

    CAS  Google Scholar 

  • Bialojan C, Takai A (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 25:283–290

    Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Cai N, Kiss B, Erdo L (1991) Heterogeneity of NMDA receptors regulating the release of dopamine and acetylcholine from striatal slices. J Neurochem 57:2148–2151

    CAS  PubMed  Google Scholar 

  • Chen NS, Luo T, Wellington C, Metzler M, McCutcheon K, Hayden MR, Raymond LA (1999) Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 72:1890–1898

    CAS  PubMed  Google Scholar 

  • Cheng C, Fass DM, Reynolds IJ (1999) Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca(2+)](i) increases and NMDA receptor mRNA levels. Brain Res 849:97–108

    CAS  PubMed  Google Scholar 

  • Chizh BA, Headley PM, Tzschentke TM (2001) NMDA receptor antagonists as analgesics: focus on the NR2B subtype. Trends Pharmacol Sci 22:636–642

    CAS  PubMed  Google Scholar 

  • Ferrer-Montiel AV, Montal M (1996) Pentameric subunit stoichiometry of a neuronal glutamate receptor. Proc Natl Acad Sci USA 93:2741–2744

    CAS  PubMed  Google Scholar 

  • Fink K, Bonisch H, Gothert M (1990). Presynaptic NMDA receptors stimulate noradrenaline release in the cerebral cortex. Eur J Pharmacol 185:115–117

    CAS  PubMed  Google Scholar 

  • Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25–6981, a highly potent and selective blocker of N-methyl-d-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 283:1285–1292

    CAS  PubMed  Google Scholar 

  • Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-d-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiat 157:1141–1149

    CAS  PubMed  Google Scholar 

  • Gill R, Alanine A, Bourson A, Buttelmann B, Fischer G, Heitz MP, Kew JN, Levet Trafit B, Lorez HP, Malherbe P, Miss MT, Mutel V, Pinard E, Roever S, Schmitt M, Trube G, Wybrecht R, Wyler R, Kemp JA (2002) Pharmacological characterization of Ro 63-1908 (1-[2-(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-ol), a novel subtype-selective N-methyl-d-aspartate antagonist. J Pharmacol Exp Ther 302:940–948

    CAS  PubMed  Google Scholar 

  • Grollman AP (1967) Inhibitors of protein biosynthesis. II. Mode of action of anisomycin. J Biol Chem 242:3226–3233

    CAS  PubMed  Google Scholar 

  • Grosshans DR, Clayton DA, Coultrap SJ, Browning MD (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nature Neurosci 5:27–33

    CAS  PubMed  Google Scholar 

  • Higgins MJ, Stone TW (1996) The contribution of adenosine to paired-pulse inhibition in the normal and disinhibited hippocampal slice. Eur J Pharmacol 317:215–223

    CAS  PubMed  Google Scholar 

  • Hrabetova S, Serrano P, Blace N, Tse HW, Skifter DA, Jane DE, Monaghan DT, Sacktor TC (2000) Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction. J Neurosci 20:RC81

    CAS  PubMed  Google Scholar 

  • Kato K, Zorumski CF (1999) Modulation of long-term potentiation in the hippocampus by NMDA-mediated presynaptic inhibition. Neuroscience 92:1261–1272

    CAS  PubMed  Google Scholar 

  • Kew JNC, Trube G, Kemp JA (1996) A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J Physiol 497:761–772

    PubMed  Google Scholar 

  • Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18:493–503

    Article  CAS  PubMed  Google Scholar 

  • Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18:2954–2961

    CAS  PubMed  Google Scholar 

  • Liu LD, Wong TP, Pozza MF, Lingenhoehl K, Wang YS, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    CAS  PubMed  Google Scholar 

  • Lynch DR, Shim SS, Seifert KM, Kurapathi S, Mutel V, Gallagher MJ, Guttmann RP (2001) Pharmacological characterization of interactions of RO25-6981 with the NR2B ([epsilon]2) subunit. Eur J Pharmacol 416:185–195

    CAS  PubMed  Google Scholar 

  • Mano I, Teichberg VI (1998) A tetrameric subunit stoichiometry for a glutamate receptor-channel complex. Neuroreport 9:327–331

    CAS  PubMed  Google Scholar 

  • Martin D, Bustos GA, Bowe MA, Bray SD, Nadler JV (1991) Autoreceptor regulation of glutamate and aspartate release from slices of the hippocampal CA1 area. J Neurochem 56:1647–1655

    CAS  PubMed  Google Scholar 

  • Mutel V, Buchy D, Klingelschmidt A, Messer J, Bleuel Z, Kemp JA, Richards JG (1998) In vitro binding properties in rat brain of [3H]Ro25-6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J Neurochem 70:2147–2155

    CAS  PubMed  Google Scholar 

  • Nikbakht MR, Stone TW (2001) Suppression of presynaptic responses to adenosine by activation of NMDA receptors. Eur J Pharmacol 427:13–25

    CAS  PubMed  Google Scholar 

  • Overton P, Clark D (1991) NMDA increases the excitability of nigrostriatal dopamine terminals. Eur J Pharmacol 201:117–120

    CAS  PubMed  Google Scholar 

  • Premkumar LS, Auerbach A (1997) Stoichiometry of recombinant N-methyl-d-aspartate receptor channels inferred from single-channel current patterns. J Gen Physiol 110:485–502

    CAS  PubMed  Google Scholar 

  • Richard F, Barroso S, Martinez J, Labbe Jullie C, Kitabgi P (2001) Agonism, inverse agonism, and neutral antagonism at the constitutively active human neurotensin receptor 2. Mol Pharmacol 60:1392–1398

    CAS  PubMed  Google Scholar 

  • Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280:1596–1599

    CAS  PubMed  Google Scholar 

  • Rusakov DA, Scimemi A, Walker MC, Kullmann DM (2004) Comment on the role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 305:1912b

    Google Scholar 

  • Rycroft BK, Gibb AJ (2002) Direct effects of calmodulin on NMDA receptor single-channel gating in rat hippocampal granule cells. J Neurosci 22:8860–8868

    CAS  PubMed  Google Scholar 

  • Scheer A, Cotecchia S (1997) Constitutively active G protein-coupled receptors: potential mechanisms of receptor activation. J Recept Signal Tr R 17:57–73

    CAS  Google Scholar 

  • Schurr A, Payne RS, Heine MF, Rigor BM (1995) Hypoxia, excitotoxicity, and neuroprotection in the hippocampal slice preparation. J Neurosci Meth 59:129–138

    CAS  Google Scholar 

  • Shahraki A, Stone TW (2003) Interactions between adenosine and metabotropic receptors in the rat hippocampal slice. Brit J Pharmacol 138:1059–1068

    CAS  Google Scholar 

  • Steece-Collier K, Chambers LK, Jaw-Tsai S S, Menniti FS, Greenamyre JT (2000) Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors. Exp Neurol 163:239–243

    CAS  PubMed  Google Scholar 

  • Wilcox KS, Dichter MA (1994) Paired-pulse depression in cultured hippocampal neurons is due to a presynaptic mechanism independent of GABA-B autoreceptor activation. J Neurosci 14:1775–1788

    CAS  PubMed  Google Scholar 

  • Wong TP, Liu LD, Sheng M, Wang YT (2004) Response to comment on the role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 305:1912c

    Google Scholar 

  • Woodhall G, Evans DI, Cunningham MO, Jones RS (2001) NR2B-containing NMDA autoreceptors at synapses on entorhinal cortical neurons. J Neurophysiol 86:1644–1651

    CAS  PubMed  Google Scholar 

  • Wu LG, Saggau P (1994) Presynaptic Ca2+ is increased during normal synaptic transmission and paired-pulse facilitation but not long-term potentiation in area CA1 of hippocampus. J Neurosci 14:645–654

    CAS  PubMed  Google Scholar 

  • Zhang L, Hsu JC, Takagi N, Gurd JW, Wallace MC, Eubanks JH (1997) Transient global ischemia alters NMDA receptor expression in rat hippocampus: correlation with decreased immunoreactive protein levels of the NR2A/2B subunits, and an altered NMDA receptor functionality. J Neurochem 69:1983–1994

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Y. Auberson of Novartis Pharmaceuticals for the gift of NVP-AAM077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor W. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallon, A.P., Auberson, Y.P. & Stone, T.W. Selective subunit antagonists suggest an inhibitory relationship between NR2B and NR2A-subunit containing N-methyl-d-aspartate receptors in hippocampal slices. Exp Brain Res 162, 374–383 (2005). https://doi.org/10.1007/s00221-004-2193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2193-6

Keywords

Navigation