Skip to main content

Advertisement

Log in

Distinct Lipid Rafts in Subdomains from Human Placental Apical Syncytiotrophoblast Membranes

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We report on the characteristics of raft domains in the apical membrane from human placental syncytiotrophoblast (hSTB), an epithelium responsible for maternal–fetal exchange. Previously, we described two isolated fractions of the hSTB apical membrane: a classical microvillous membrane (MVM) and a light microvillous membrane (LMVM). Detergent-resistant microdomains (DRMs) from MVM and LMVM were prepared with Triton X-100 followed by flotation in a sucrose gradient and tested by Western and dot blot with raft markers (placental alkaline phosphatase, lipid ganglioside, annexin 2) and transferrin receptor as a nonraft marker. DRMs from both fractions showed a consistent peak for these markers, except that the DRMs from MVM had no annexin 2 mark. Cholesterol depletion modified the segregation in both groups of DRMs. Our results show two distinguishable lipid raft subsets from MVM and LMVM. Additionally, we found significant differences between MVM and LMVM in cholesterol content and in expression of cytoskeletal proteins. MVM is enriched in ezrin and β-actin; in contrast, cholesterol and cytokeratin-7 are more abundant in LMVM. These differences may explain the distinct properties of the lipid raft subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

hSTB:

Syncytiotrophoblast

PLAP:

Alkaline phosphatase

Anx-2:

Annexin A2

MVM:

Classical microvillous membrane

LMVM:

Light microvillous membrane

CK-7:

Cytokeratin-7

htf-R:

Human transferrin receptor

DRMs:

Detergent-resistant membranes

mβ-CD:

Methyl β-cyclodextrin

References

  • Arvanitis DN, Min W, Gong Y, Heng YM, Boggs JM (2005) Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin. J Neurochem 94:1696–1710

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk EB, Draeger A (2000) Annexins in cell membrane dynamics. Ca2+-regulated association of lipid microdomains. J Cell Biol 150:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk EB, Draeger A (2006) Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem J 397:407–416

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk EB, Monastyrskaya K, Burkhard FC, Wray S, Draeger A (2002) Modulating signaling events in smooth muscle: cleavage of annexin 2 abolishes its binding to lipid rafts. FASEB J 16:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Bernucci L, Umana F, Llanos P, Riquelme G (2003) Large chloride channel from pre-eclamptic human placenta. Placenta 24:895–903

    Article  PubMed  CAS  Google Scholar 

  • Berrios N, Diaz P, Riquelme G (2008) Functional incorporation of potassium channels from syncytiotrophoblast apical membrane into Xenopus laevis oocytes. Placenta 29:119

    Google Scholar 

  • Berryman M, Gary R, Bretscher A (1995) Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J Cell Biol 131:1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Braccia A, Villani M, Immerdal L, Niels-Christiansen LL, Nystrom BT, Hansen GH, Danielsen EM (2003) Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by “superrafts”. J Biol Chem 278:15679–15684

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Smith ER, Hanada K, Stevens VL, Mayor S (2001) GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J 20:1583–1592

    Article  PubMed  CAS  Google Scholar 

  • Crane JM, Tamm LK (2004) Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys J 86:2965–2979

    Article  PubMed  CAS  Google Scholar 

  • Danielsen EM, Hansen GH (2003) Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions. Biochim Biophys Acta 1617:1–9

    Article  PubMed  CAS  Google Scholar 

  • Delacour D, Jacob R (2006) Apical protein transport. Cell Mol Life Sci 63:2491–2505

    Article  PubMed  CAS  Google Scholar 

  • Fantini J, Garmy N, Mahfoud R, Yahi N (2002) Lipid rafts: structure, function and role in HIV, Alzheimers and prion diseases. Expert Rev Mol Med 2002:1–22

    Google Scholar 

  • Gaus K, Rodriguez M, Ruberu KR, Gelissen I, Sloane TM, Kritharides L, Jessup W (2005) Domain-specific lipid distribution in macrophage plasma membranes. J Lipid Res 46:1526–1538

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Nishijima M, Akamatsu Y, Pagano RE (1995) Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem 270:6254–6260

    Article  PubMed  CAS  Google Scholar 

  • Hanono A, Garbett D, Reczek D, Chambers DN, Bretscher A (2006) EPI64 regulates microvillar subdomains and structure. J Cell Biol 175:803–813

    Article  PubMed  CAS  Google Scholar 

  • Harder T, Gerke V (1994) The annexin II2p11(2) complex is the major protein component of the triton X–100-insoluble low-density fraction prepared from MDCK cells in the presence of Ca2+. Biochim Biophys Acta 1223:375–382

    Article  PubMed  CAS  Google Scholar 

  • Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, Fujimori M, Shibata S, Okajima M, Ishizaki Y, Kurihara T, Miyata Y, Iseki M, Shimizu Y, Tokumoto N, Ozaki S, Asahara T (2006) Combined immunohistochemistry of beta-catenin, cytokeratin 7, and cytokeratin 20 is useful in discriminating primary lung adenocarcinomas from metastatic colorectal cancer. BMC Cancer 6:31

    Article  PubMed  CAS  Google Scholar 

  • Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13:470–477

    Article  PubMed  CAS  Google Scholar 

  • Janich P, Corbeil D (2007) GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 581:1783–1787

    Article  PubMed  CAS  Google Scholar 

  • Jimenez V, Henriquez M, Llanos P, Riquelme G (2004) Isolation and purification of human placental plasma membranes from normal and pre-eclamptic pregnancies: a comparative study. Placenta 25:422–437

    Article  PubMed  CAS  Google Scholar 

  • Lagerholm BC, Weinreb GE, Jacobson K, Thompson NL (2005) Detecting microdomains in intact cell membranes. Annu Rev Phys Chem 56:309–336

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg D, Goni FM, Heerklotz H (2005) Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 30:430–436

    Article  PubMed  CAS  Google Scholar 

  • Llanos P, Henriquez M, Riquelme G (2002) A low conductance, non-selective cation channel from human placenta. Placenta 23:184–191

    Article  PubMed  CAS  Google Scholar 

  • Macdonald JL, Pike LJ (2005) A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res 46:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Mazzone A, Tietz P, Jefferson J, Pagano R, LaRusso NF (2006) Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes. Hepatology 43:287–296

    Article  PubMed  CAS  Google Scholar 

  • Meder D, Moreno MJ, Verkade P, Vaz WL, Simons K (2006) Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc Natl Acad Sci USA 103:329–334

    Article  PubMed  CAS  Google Scholar 

  • Montalbetti N, Li Q, Wu Y, Chen XZ, Cantiello HF (2007) Polycystin–2 cation channel function in the human syncytiotrophoblast is regulated by microtubular structures. J Physiol 579:717–728

    Article  PubMed  CAS  Google Scholar 

  • Morales FC, Takahashi Y, Kreimann EL, Georgescu MM (2004) Ezrin-radixin-moesin (ERM)-binding phosphoprotein 50 organizes ERM proteins at the apical membrane of polarized epithelia. Proc Natl Acad Sci USA 101:17705–17710

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HT, Amine AB, Lafitte D, Waheed AA, Nicoletti C, Villard C, Letisse M, Deyris V, Roziere M, Tchiakpe L, Danielle CD, Comeau L, Hiol A (2006) Proteomic characterization of lipid rafts markers from the rat intestinal brush border. Biochem Biophys Res Commun 342:236–244

    Article  PubMed  CAS  Google Scholar 

  • Paku S, Dezso K, Kopper L, Nagy P (2005) Immunohistochemical analysis of cytokeratin 7 expression in resting and proliferating biliary structures of rat liver. Hepatology 42:863–870

    Article  PubMed  Google Scholar 

  • Paradela A, Bravo SB, Henriquez M, Riquelme G, Gavilanes F, Gonzalez-Ros JM, Albar JP (2005) Proteomic analysis of apical microvillous membranes of syncytiotrophoblast cells reveals a high degree of similarity with lipid rafts. J Proteome Res 4:2435–2441

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  • Rajendran L, Masilamani M, Solomon S, Tikkanen R, Stuermer CA, Plattner H, Illges H (2003) Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proc Natl Acad Sci USA 100:8241–8246

    Article  PubMed  CAS  Google Scholar 

  • Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118:1099–1102

    Article  PubMed  CAS  Google Scholar 

  • Riquelme G, Parra M (1999) Regulation of human placental chloride channel by arachidonic acid and other cis unsaturated fatty acids. Am J Obstet Gynecol 180:469–475

    Article  PubMed  CAS  Google Scholar 

  • Riquelme G, Stutzin A, Barros LF, Liberona JL (1995) A chloride channel from human placenta reconstituted into giant liposomes. Am J Obstet Gynecol 173:733–738

    Article  PubMed  CAS  Google Scholar 

  • Riquelme G, Llanos P, Tischner E, Neil J, Campos B (2004) Annexin 6 modulates the maxi-chloride channel of the apical membrane of syncytiotrophoblast isolated from human placenta. J Biol Chem 279:50601–50608

    Article  PubMed  CAS  Google Scholar 

  • Roper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2:582–592

    Article  PubMed  CAS  Google Scholar 

  • Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA (1998) Cholesterol and sphingolipid enhance the Triton X–100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem 273:1150–1157

    Article  PubMed  CAS  Google Scholar 

  • Schuck S, Simons K (2004) Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Taieb N, Yahi N, Fantini J (2004) Rafts and related glycosphingolipid-enriched microdomains in the intestinal epithelium: bacterial targets linked to nutrient absorption. Adv Drug Deliv Rev 56:779–794

    Article  PubMed  CAS  Google Scholar 

  • Tyska MJ, Mackey AT, Huang JD, Copeland NG, Jenkins NA, Mooseker MS (2005) Myosin–1a is critical for normal brush border structure and composition. Mol Biol Cell 16:2443–2457

    Article  PubMed  CAS  Google Scholar 

  • Vallejos C, Riquelme G (2007) The maxi-chloride channel in human syncytiotrophoblast: a pathway for taurine efflux in placental volume regulation? Placenta 28:1182–1191

    Article  PubMed  CAS  Google Scholar 

  • Vallejos C, Guerrero I, Riquelme G (2008) Potassium channels in syncytiotrophoblast: an electrophysiological challenge. Placenta 29:123

    Google Scholar 

  • van der Goot FG, Harder T (2001) Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol 13:89–97

    Article  PubMed  CAS  Google Scholar 

  • Volonte D, Galbiati F, Li S, Nishiyama K, Okamoto T, Lisanti MP (1999) Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin–1 monoclonal antibody probe. J Biol Chem 274:12702–12709

    Article  PubMed  CAS  Google Scholar 

  • Wald FA, Oriolo AS, Casanova ML, Salas PJ (2005) Intermediate filaments interact with dormant ezrin in intestinal epithelial cells. Mol Biol Cell 16:4096–4107

    Article  PubMed  CAS  Google Scholar 

  • Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Yoon SI, Huang P, Wang Y, Chen C, Chong PL, Liu-Chen LY (2006) Localization of the kappa opioid receptor in lipid rafts. J Pharmacol Exp Ther 317:1295–1306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Dr. M. Pérez and the staff at the San José Hospital Maternity Unit for assistance in obtaining the biological material. We also thank Dr. V. Illanes for critical reading of the manuscript and Mr. Aldo Valdebenito for technical assistance. This research was supported by grant Fondecyt–Chile 1070695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Riquelme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godoy, V., Riquelme, G. Distinct Lipid Rafts in Subdomains from Human Placental Apical Syncytiotrophoblast Membranes. J Membrane Biol 224, 21–31 (2008). https://doi.org/10.1007/s00232-008-9125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9125-5

Keywords

Navigation