Skip to main content

Advertisement

Log in

Current state and perspectives on erythropoietin production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Erythropoietin is a major regulator of erythropoiesis which maintains the body’s red blood cell mass and tissue oxygenation at an optimum level. Recombinant human erythropoietin (rhEPO), which is a widely used therapeutic agent for the treatment of anemia and which represents one of the largest biopharmaceuticals markets, is produced from recombinant Chinese hamster ovary cells. rhEPO is a glycoprotein with complex glycan structure, which is responsible for its therapeutic efficacy, including the in vivo activity and half-life. In order to obtain an optimal and consistent glycoform profile of rhEPO and concurrently maintain a high production yield, various approaches in drug development and cell culture technology have been attempted. Recent advances in rhEPO production are classified into three types: the development of improved rhEPO molecules by protein engineering; improvement of production host cells by genetic engineering; and culture condition optimization by fine control of the production mode/system, process parameters, and culture media. In this review, we focus on rhEPO production strategies as they have progressed thus far. Furthermore, the current status of the market and outlook on rhEPO and its derivatives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn WS, Jeon JJ, Jeong YR, Lee SJ, Yoon SK (2008) Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Biotechnol Bioeng 101:1234–1244

    Article  CAS  Google Scholar 

  • Anonymous (2007) Information for healthcare professionals: erythropoiesis stimulating agents (ESA) [Aranesp (darbepoetin), Epogen (epoetin alfa), and Procrit (epoetin alfa)]. FDA. http://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm126485.htm

  • Anonymous (2008) Supplemental request for comments: Submission by Hospira, Inc., emerging health care competition and consumer issues comment, Project No. P083901. Federal Trade Commission. http://www.ftc.gov/os/comments/healthcarecompissues/537778-00039.htm

  • Anonymous (2011a) INN for biological and biotechnological substances (a review), INN Working Document 05.179. World Health Organization

  • Anonymous (2011b) Top 30 biologics 2010. La Merie Business Intelligence. http://www.pipelinereview.com

  • Anonymous (2011c) FDA drug safety communication: modified dosing recommendations to improve the safe use of Erythropoiesis-Stimulating Agents (ESAs) in chronic kidney disease. FDA. http://www.fda.gov/drugs/drugsafety/ucm259639.htm.

  • Anonymous (2012) FDA backs Affymax and Takeda drug Omontys for anemia due to CKD. The pharma letter. http://www.thepharmaletter.com/file/112200/fda-backs-affymax-and-takeda-drug-omontys-for-anemia-due-to-ckd.html

  • Bork K, Reutter W, Weidemann W, Horstkorte R (2007) Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett 581:4195–4198

    Article  CAS  Google Scholar 

  • Borys MC, Dalal NG, Abu-Absi NR, Khattak SF, Jing Y, Xing Z, Li ZJ (2010) Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells. Biotechnol Bioeng 105:1048–1057

    CAS  Google Scholar 

  • Carcagno CM, Criscuolo ME, Melo CA, Vidal JA (2006) Methods of purifying recombinant human erythropoietin from cell culture supernatants no. 09830964; filed on 1999-11-08. US Patent 7012130

  • Cazzola M, Mercuriali F, Brugnara C (1997) Use of recombinant human erythropoietin outside the setting of uremia. Blood 89:4248–4267

    CAS  Google Scholar 

  • Chen P, Harcum SW (2006) Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng 8:123–132

    Article  CAS  Google Scholar 

  • Chuan KH, Lim SF, Martin L, Yun CY, Loh SO, Lasne F, Song Z (2006) Caspase activation, sialidase release and changes in sialylation pattern of recombinant human erythropoietin produced by CHO cells in batch and fed-batch cultures. Cytotechnology 51:67–79

    Article  CAS  Google Scholar 

  • Chung BS, Jeong YT, Chang KH, Kim JS, Kim JH (2001) Effect of sodium butyrate on glycosylation of recombinant erythropoietin. J Microbiol Biotechnol 11:1087–1092

    CAS  Google Scholar 

  • Crowell CK, Grampp GE, Rogers GN, Miller J, Scheinman RI (2007) Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 96:538–549

    Article  CAS  Google Scholar 

  • Crowell CK, Qin Q, Grampp GE, Radcliffe RA, Rogers GN, Scheinman RI (2008) Sodium butyrate alters erythropoietin glycosylation via multiple mechanisms. Biotechnol Bioeng 99:201–213

    Article  CAS  Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  CAS  Google Scholar 

  • Delorme E, Lorenzini T, Giffin J, Martin F, Jacobsen F, Boone T, Elliott S (1992) Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31:9871–9876

    Article  CAS  Google Scholar 

  • Duvar S, Berlin J, Ziehr H, Conradt HS (2005) Modulation of the glycosylation repertoire of a recombinant human EPO expressing model cell line under different culture conditions. In: Animal cell technology meets genomics, ESACT Proceedings, 2, 723–725

  • Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant 16:3–13

    Article  Google Scholar 

  • Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, Busse L, Chang D, Fuller J, Grant J, Hernday N, Hokum M, Hu S, Knudten A, Levin N, Komorowski R, Martin F, Navarro R, Osslund T, Rogers G, Rogers N, Trail G, Egrie J (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 21:414–421

    Article  CAS  Google Scholar 

  • Fares F, Ganem S, Hajouj T, Agai E (2007) Development of a long-acting erythropoietin by fusing the carboxyl-terminal peptide of human chorionic gonadotropin beta-subunit to the coding sequence of human erythropoietin. Endocrinology 148:5081–5087

    Article  CAS  Google Scholar 

  • Fisher JW (2003) Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood) 228:1–14

    CAS  Google Scholar 

  • Fukuda MN, Sasaki H, Lopez L, Fukuda M (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73:84–89

    CAS  Google Scholar 

  • Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28:863–867

    Article  CAS  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  CAS  Google Scholar 

  • Han YK, Ha TK, Kim YG, Lee GM (2011) Bcl-x(L) overexpression delays the onset of autophagy and apoptosis in hyperosmotic recombinant Chinese hamster ovary cell cultures. J Biotechnol 156:52–55

    Article  CAS  Google Scholar 

  • Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19:936–949

    Article  CAS  Google Scholar 

  • Irani N, Beccaria AJ, Wagner R (2002) Expression of recombinant cytoplasmic yeast pyruvate carboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells. J Biotechnol 93:269–282

    Article  CAS  Google Scholar 

  • Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, Seehra J, Jones SS, Hewick R, Fritsch EF, Kawakita M, Shimizu T, Miyake T (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313:806–810

    Article  CAS  Google Scholar 

  • Jelkmann W (2010) Biosimilar epoetins and other “follow-on” biologics: update on the European experiences. Am J Hematol 85:771–780

    Article  Google Scholar 

  • Jeong YT, Choi O, Lim HR, Son YD, Kim HJ, Kim JH (2008) Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J Microbiol Biotechnol 18:1945–1952

    CAS  Google Scholar 

  • Jeong YT, Choi O, Son YD, Park SY, Kim JH (2009) Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells. Biotechnol Appl Biochem 52:283–291

    Article  CAS  Google Scholar 

  • Joung CH, Shin JY, Koo JK, Lim JJ, Wang JS, Lee SJ, Tan HK, Kim SL, Lim SM (2009) Production and characterization of long-acting recombinant human albumin-EPO fusion protein expressed in CHO cell. Protein Expr Purif 68:137–145

    Article  CAS  Google Scholar 

  • Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  CAS  Google Scholar 

  • Kochendoerfer GG, Chen SY, Mao F, Cressman S, Traviglia S, Shao H, Hunter CL, Low DW, Cagle EN, Carnevali M, Gueriguian V, Keogh PJ, Porter H, Stratton SM, Wiedeke MC, Wilken J, Tang J, Levy JJ, Miranda LP, Crnogorac MM, Kalbag S, Botti P, Schindler-Horvat J, Savatski L, Adamson JW, Kung A, Kent SB, Bradburne JA (2003) Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 299:884–887

    Article  CAS  Google Scholar 

  • Kretzmer G (2002) Industrial processes with animal cells. Appl Microbiol Biotechnol 59:135–142

    Article  CAS  Google Scholar 

  • Lai PH, Strickland TW (1987) Erythropoietin purification no. 747119; filed on 1985-06-20. US Patent 4667016

  • Lai PH, Everett R, Wang FF, Arakawa T, Goldwasser E (1986) Structural characterization of human erythropoietin. J Biol Chem 261:3116–3121

    CAS  Google Scholar 

  • Leehuang S (1984) Cloning and expression of human erythropoietin cDNA in Escherichia coli. P Natl Acad Sci Biol 81:2708–2712

    Article  CAS  Google Scholar 

  • Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z (1985) Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA 82:7580–7584

    Article  CAS  Google Scholar 

  • Macdougall IC (2005) CERA (continuous erythropoietin receptor activator): a new erythropoiesis-stimulating agent for the treatment of anemia. Curr Hematol Rep 4:436–440

    CAS  Google Scholar 

  • Macdougall IC, Gray SJ, Elston O, Breen C, Jenkins B, Browne J, Egrie J (1999) Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol 10:2392–2395

    CAS  Google Scholar 

  • Mariati NYK, Chao SH, Yap MG, Yang Y (2010) Evaluating regulatory elements of human cytomegalovirus major immediate early gene for enhancing transgene expression levels in CHO K1 and HEK293 cells. J Biotechnol 147:160–163

    Article  CAS  Google Scholar 

  • Miyake T, Kung CK, Goldwasser E (1977) Purification of human erythropoietin. J Biol Chem 252:5558–5564

    CAS  Google Scholar 

  • Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G (1971) The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 246:1461–1467

    CAS  Google Scholar 

  • Nagao M, Inoue K, Moon SK, Masuda S, Takagi H, Udaka S, Sasaki R (1997) Secretory production of erythropoietin and the extracellular domain of the erythropoietin receptor by Bacillus brevis: affinity purification and characterization. Biosci Biotechnol Biochem 61:670–674

    Article  CAS  Google Scholar 

  • Nett JH, Gomathinayagam S, Hamilton SR, Gong B, Davidson RC, Du M, Hopkins D, Mitchell T, Mallem MR, Nylen A, Shaikh SS, Sharkey N, Barnard GC, Copeland V, Liu L, Evers R, Li Y, Gray PM, Lingham RB, Visco D, Forrest G, DeMartino J, Linden T, Potgieter TI, Wildt S, Stadheim TA, d'Anjou M, Li H, Sethuraman N (2012) Optimization of erythropoietin production with controlled glycosylation-PEGylated erythropoietin produced in glycoengineered Pichia pastoris. J Biotechnol 157:198–206

    Article  CAS  Google Scholar 

  • Ngantung FA, Miller PG, Brushett FR, Tang GL, Wang DI (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol Bioeng 95:106–119

    Article  CAS  Google Scholar 

  • Noguchi A, Mukuria CJ, Suzuki E, Naiki M (1996) Failure of human immunoresponse to N-glycolylneuraminic acid epitope contained in recombinant human erythropoietin. Nephron 72:599–603

    Article  CAS  Google Scholar 

  • Padler-Karavani V, Yu H, Cao H, Chokhawala H, Karp F, Varki N, Chen X, Varki A (2008) Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18:818–830

    Article  CAS  Google Scholar 

  • Pollack A (2012) F.D.A. Approves new anemia drug. The New York Times. http://www.nytimes.com/2012/03/28/health/policy/fda-approves-new-anemia-drug.html

  • Restelli V, Wang MD, Huzel N, Ethier M, Perreault H, Butler M (2006) The effect of dissolved oxygen on the production and the glycosylation profile of recombinant human erythropoietin produced from CHO cells. Biotechnol Bioeng 94:481–494

    Article  CAS  Google Scholar 

  • Rudd PM, Dwek RA (1997) Glycosylation: heterogeneity and the 3D structure of proteins. Crit Rev Biochem Mol Biol 32:1–100

    Article  CAS  Google Scholar 

  • Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262:12059–12076

    CAS  Google Scholar 

  • Schumann C, Mack M, Hesse JO (2009) Method for purifying erythropoietin No. 11570224; filed on 2005-06-07. US Patent 7619073

  • Skibeli V, Nissen-Lie G, Torjesen P (2001) Sugar profiling proves that human serum erythropoietin differs from recombinant human erythropoietin. Blood 98:3626–3634

    Article  CAS  Google Scholar 

  • Sodoyer R (2004) Expression systems for the production of recombinant pharmaceuticals. BioDrugs 18:51–62

    Article  CAS  Google Scholar 

  • Solá RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24:9–21

    Article  Google Scholar 

  • Son YD, Jeong YT, Park SY, Kim JH (2011) Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology 21:1019–1028

    Article  CAS  Google Scholar 

  • Sowade B, Sowade O, Möcks J, Franke W, Warnke H (1998) The safety of treatment with recombinant human erythropoietin in clinical use: a review of controlled studies. Int J Mol Med 1:303–314

    CAS  Google Scholar 

  • Strickland TW (1999) Erythropoietin isoforms no. 334882; filed on 1994-11-03. US Patent 5856298

  • Sytkowski AJ, Lunn ED, Davis KL, Feldman L, Siekman S (1998) Human erythropoietin dimers with markedly enhanced in vivo activity. Proc Natl Acad Sci USA 95:1184–1188

    Article  CAS  Google Scholar 

  • Sytkowski AJ, Lunn ED, Risinger MA, Davis KL (1999) An erythropoietin fusion protein comprised of identical repeating domains exhibits enhanced biological properties. J Biol Chem 274:24773–24778

    Article  CAS  Google Scholar 

  • Takeuchi M, Takasaki S, Miyazaki H, Kato T, Hoshi S, Kochibe N, Kobata A (1988) Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J Biol Chem 263:3657–3663

    CAS  Google Scholar 

  • Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Müller D (2006a) Process parameter shifting: part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94:1033–1044

    Article  CAS  Google Scholar 

  • Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Müller D (2006b) Process parameter shifting: Part II. Biphasic cultivation—a tool for enhancing the volumetric productivity of batch processes using Epo-Fc expressing CHO cells. Biotechnol Bioeng 94:1045–1052

    Article  CAS  Google Scholar 

  • Wang MD, Yang M, Huzel N, Butler M (2002) Erythropoietin production from CHO cells grown by continuous culture in a fluidized-bed bioreactor. Biotechnol Bioeng 77:194–203

    Article  CAS  Google Scholar 

  • Wang Z, Park JH, Park HH, Tan W, Park TH (2011) Enhancement of recombinant human EPO production and sialylation in Chinese hamster ovary cells through Bombyx mori 30Kc19 gene expression. Biotechnol Bioeng 108:1634–1642

    Article  CAS  Google Scholar 

  • Wasley LC, Timony G, Murtha P, Stoudemire J, Dorner AJ, Caro J, Krieger M, Kaufman RJ (1991) The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin. Blood 77:2624–2632

    CAS  Google Scholar 

  • Way JC, Lauder S, Brunkhorst B, Kong SM, Qi A, Webster G, Campbell I, McKenzie S, Lan Y, Marelli B, Nguyen LA, Degon S, Lo KM, Gillies SD (2005) Improvement of Fc-erythropoietin structure and pharmacokinetics by modification at a disulfide bond. Protein Eng Des Sel 18:111–118

    Article  CAS  Google Scholar 

  • Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17:1116–1121

    Article  CAS  Google Scholar 

  • Wienand W, Kunz FR, Reichert D, Eul W, Hanko R, Birr C, Singhofer-Wowra M, Schopohl-König D, Faber L (2011) Method for purifying erythropoietin no. 12996203; filed on 2009-05-28. US Patent Application Publication 20110152506

  • Wong DC, Wong KT, Goh LT, Heng CK, Yap MG (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177

    Article  CAS  Google Scholar 

  • Wong NS, Wati L, Nissom PM, Feng HT, Lee MM, Yap MG (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107:321–336

    Article  CAS  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29:735–741

    Article  CAS  Google Scholar 

  • Yang M, Butler M (2000a) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68:370–380

    Article  CAS  Google Scholar 

  • Yang M, Butler M (2000b) Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol Prog 16:751–759

    Article  CAS  Google Scholar 

  • Yang M, Butler M (2002) Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol Prog 18:129–138

    Article  CAS  Google Scholar 

  • Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82:289–298

    Article  CAS  Google Scholar 

  • Yoon SK, Hong JK, Lee GM (2004) Effect of simultaneous application of stressful culture conditions on specific productivity and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Prog 20:1293–1296

    Article  CAS  Google Scholar 

  • Yoon SK, Choi SL, Song JY, Lee GM (2005) Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0 degrees C. Biotechnol Bioeng 89:345–356

    Article  CAS  Google Scholar 

  • Yuen CT, Storring PL, Tiplady RJ, Izquierdo M, Wait R, Gee CK, Gerson P, Lloyd P, Cremata JA (2003) Relationships between the N-glycan structures and biological activities of recombinant human erythropoietins produced using different culture conditions and purification procedures. Br J Haematol 121:511–526

    Article  CAS  Google Scholar 

  • Zhang X, Lok SH, Kon OL (1998) Stable expression of human alpha-2, 6-sialyltransferase in Chinese hamster ovary cells: functional consequences for human erythropoietin expression and bioactivity. Biochim Biophys Acta 1425:441–452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the World Class University program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (MEST, R31-2008-000-10071-0), the Converging Research Center Program through the NRF funded by the MEST (2009-0082276), and a grant from the Intelligent Synthetic Biology Center of Global Frontier Project funded by the MEST (2011-0031962), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyun Min Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.S., Ha, T.K., Lee, S.J. et al. Current state and perspectives on erythropoietin production. Appl Microbiol Biotechnol 95, 1405–1416 (2012). https://doi.org/10.1007/s00253-012-4291-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4291-x

Keywords

Navigation