Skip to main content
Log in

Role of Na+, K+-ATPase α1 subunit in the intracellular accumulation of cisplatin

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

The present study was undertaken to identify what regulates intracellular cisplatin (CDDP) accumulation and what changes in membrane fraction of CDDDP-resistant cell line. The CDDP-resistant rat hepatoma cell line, H4-II-E/CDDP, shows a significant decrease in intracellular platinum accumulation compared with parental H4-II-E cells, although there was no difference in the efflux of CDDP between these two cell lines. In this study, we examined the contribution of functional change in active transport to the CDDP resistance of H4-II-E/CDDP cells. Compared with the resistant cells, platinum accumulation in the parental cells was clearly decreased by low temperature or ATP depletion. In addition, the Na+, K+-ATPase inhibitor ouabain and the K+ channel inhibitor tetraethylammonium decreased platinum accumulation in parental cells but did not change the accumulation in resistant cells. Amphotericin B, an antifungal agent, increased the intracellular platinum accumulation in resistant cells to the same level as in parent cells. Western blot analysis demonstrated that the Na+, K+-ATPase α1 subunit was reduced in resistant cells compared with the parental cells, although there was no difference in the expression of the β1 subunit between the two cell lines. Furthermore, the Na+, K+-ATPase α1 subunit of H4-II-E was decreased following a 24-h exposure to CDDP. These results suggest that Na+, K+-ATPase-dependent active transport of CDDP does not occur in resistant cells, and, furthermore, our findings provide the first evidence that the Na+, K+-ATPase α1 subunit plays an important role in the transport of CDDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Perez RP (1998) Cellular and molecular determinants of cisplatin resistance. Eur J Cancer 34:1535–1542

    Article  PubMed  CAS  Google Scholar 

  2. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  PubMed  CAS  Google Scholar 

  3. Fuertes MA, Alonso C, Perez JM (2003) Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103:645–662

    Article  PubMed  CAS  Google Scholar 

  4. Kelland LR, Sharp SY, O‘Neill CF, Raynaud FI, Beale PJ, Judson IR (1999) Mini-review: discovery and development of platinum complexes designed to circumvent cisplatin resistance. J Inorg Biochem 77:111–115

    Article  PubMed  CAS  Google Scholar 

  5. Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67:1171–1176

    PubMed  CAS  Google Scholar 

  6. Mann SC, Andrews PA, Howell SB (1988) Comparison of lipid content, surface membrane fluidity, and temperature dependence of cis-diamminedichloroplatinum(II) accumulation in sensitive and resistant human ovarian carcinoma cells. Anticancer Res 8:1211–1215

    PubMed  CAS  Google Scholar 

  7. Andrews PA, Mann SC, Huynh HH, Albright KD (1991) Role of the Na+, K+-adenosine triphosphatase in the accumulation of cis-diamminedichloroplatinum(II) in human ovarian carcinoma cells. Cancer Res 51:3677–3681

    PubMed  CAS  Google Scholar 

  8. Andrews PA, Albright KD (1992) Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells. Cancer Res 52:1895–1901

    PubMed  CAS  Google Scholar 

  9. Komatsu M, Sumizawa T, Mutoh M, Chen Z-S, Terada K, Furukawa T, Yang X-L, Gao H, Miura N, Sugiyama T, Akiyama S (2000) Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res 60:1312–1316

    PubMed  CAS  Google Scholar 

  10. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302

    Article  PubMed  CAS  Google Scholar 

  11. Kishimoto S, Miyazawa K, Terakawa Y, Ashikari H, Ohtani A, Fukushima S, Takeuchi Y (2000) Cytotoxicity of cis-[((1R,2R)-1,2-cyclohexanediamine-N,N’)bis(myristato)]-platinum (II) suspended in Lipiodol in a newly established cisplatin-resistant rat hepatoma cell line. Jpn J Cancer Res 91:1326–1332

    PubMed  CAS  Google Scholar 

  12. Dornish JM, Pettersen EO (1985) Protection from cis-dichlorodiammineplatinum-induced cell inactivation by aldehydes involves cell membrane amino groups. Cancer Lett 29:235–243

    Article  PubMed  CAS  Google Scholar 

  13. Loh SY, Mistry P, Kelland LR, Abel G, Harrap KR (1992) Reduced drug accumulation as a major mechanism of acquired resistance to cisplatin in a human ovarian carcinoma cell line: circumvention studies using novel platinum (II) and (IV) ammine/amine complexes. Br J Cancer 66:1109–1115

    PubMed  CAS  Google Scholar 

  14. Bando T, Fujimura M, Kasahara K, Matsuda T (1998) Significance of Na+, K+-ATPase on intracellular accumulation of cis-diamminedichloroplatinum(II) in human non-small-cell but not in small-cell lung cancer cell lines. Anticancer Res 18:1085–1089

    PubMed  CAS  Google Scholar 

  15. Lizuka N, Miyamoto K, Tangoku A, Hayashi H, Hazama S, Yoshino S, Yoshimura K, Hirose K, Yoshida H, Oka M (2000) Downregulation of intracellular nm23-H1 prevents cisplatin-induced DNA damage in oesophageal cancer cells: possible association with Na+, K+-ATPase. Br J Cancer 83:1209–1215

    Article  PubMed  CAS  Google Scholar 

  16. Katano K, Kondo A, Safaei R, Holzer A, Samimi G, Mishima M, Kuo YM, Rochdi M, Howell SB (2002) Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 62:6559–6565

    PubMed  CAS  Google Scholar 

  17. Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154–1159

    Article  PubMed  CAS  Google Scholar 

  18. Beretta GL, Gatti L, Tinelli S, Corna E, Colangelo D, Zunino F, Perego P (2004) Cellular pharmacology of cisplatin in relation to the expression of human copper transporter CTR1 in different pairs of cisplatin-sensitive and -resistant cells. Biochem Pharmacol 68:283–291

    Article  PubMed  CAS  Google Scholar 

  19. Holzer AK, Samimi G, Katano K, Naerdemann W, Lin X, Safaei R, Howell SB (2004) The copper influx transporter hCTR1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol 66:817–823

    Article  PubMed  CAS  Google Scholar 

  20. Samimi G, Katano K, Holzer AK, Safaei R, Howell SB (2004) Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol 66:25–32

    Article  PubMed  CAS  Google Scholar 

  21. Lingrel JB, Kuntzweiler T (1994) Na+, K+-ATPase. J Biol Chem 269:19659–19662

    PubMed  CAS  Google Scholar 

  22. Rose AM, Valdes R Jr (1994) Understanding the sodium pump and its relevance to disease. Clin Chem 40:1674–1685

    PubMed  CAS  Google Scholar 

  23. Geering K (1990) Subunit assembly and functional maturation of Na,K-ATPase. J Membr Biol 115:109–121

    Article  PubMed  CAS  Google Scholar 

  24. McDonough AA, Geering K, Farley RA (1990) The sodium pump needs its beta subunit. FASEB J 4:1598–1605

    PubMed  CAS  Google Scholar 

  25. Takeyasu K, Tamkun MM, Renaud KJ, Fambrough DM (1988) Ouabain-sensitive (Na+, K+)-ATPase activity expressed in mouse L cells by transfection with DNA encoding the alpha-subunit of an avian sodium pump. J Biol Chem 263:4347–4354

    PubMed  CAS  Google Scholar 

  26. Andrews PA, Velury S, Mann SC, Howell SB (1988) cis-Diamminedichloroplatinum(II) accumulation in sensitive and resistant human ovarian carcinoma cells. Cancer Res 48:68–73

    PubMed  CAS  Google Scholar 

  27. Sharp SY, Rogers PM, Kelland LR (1995) Transport of cisplatin and bis-acetato-ammine-dichlorocyclohexylamine Platinum (IV) (JM216) in human ovarian carcinoma cell lines: identification of a plasma membrane protein associated with cisplatin resistance. Clin Cancer Res 1:981–989

    PubMed  CAS  Google Scholar 

  28. Komuro Y, Udagawa Y, Susumu N, Aoki D, Kubota T, Nozawa S (2001) Paclitaxel and SN-38 overcome cisplatin resistance of ovarian cancer cell lines by down-regulating the influx and efflux system of cisplatin. Jpn J Cancer Res 92:1242–1250

    PubMed  CAS  Google Scholar 

  29. Kolb RJ, Ghazi AM, Barfuss DW (2003) Inhibition of basolateral transport and cellular accumulation of cDDP and N-acetyl-L-cysteine-cDDP by TEA and PAH in the renal proximal tubule. Cancer Chemother Pharmacol 51:132–138

    PubMed  CAS  Google Scholar 

  30. Kikkawa F, Kojima M, Oguchi H, Maeda O, Ishikawa H, Tamakoshi K, Mizuno K, Kawai M, Suganuma N, Tomoda Y (1993) Potentiating effect of amphotericin B on five platinum anticancer drugs in human cis-diamminedichloroplatinum (II) sensitive and resistant ovarian carcinoma cells. Anticancer Res 13:891–896

    PubMed  CAS  Google Scholar 

  31. Morikage T, Bungo M, Inomata M, Yoshida M, Ohmori T, Fujiwara Y, Nishio K, Saijo N (1991) Reversal of cisplatin resistance with amphotericin B in a non-small cell lung cancer cell line. Jpn J Cancer Res 82:747–751

    PubMed  CAS  Google Scholar 

  32. Delamere NA, Dean WL, Stidam JM, Moseley AE (1996) Influence of amphotericin B on the sodium pump of porcine lens epithelium. Am J Physiol 270:C465–C473

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Kishimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishimoto, S., Kawazoe, Y., Ikeno, M. et al. Role of Na+, K+-ATPase α1 subunit in the intracellular accumulation of cisplatin. Cancer Chemother Pharmacol 57, 84–90 (2006). https://doi.org/10.1007/s00280-005-0003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0003-x

Keywords

Navigation