Skip to main content

Advertisement

Log in

EGF activates PI3K-Akt and NF-κB via distinct pathways in salivary epithelial cells in Sjögren’s syndrome

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Epidermal growth factor (EGF) exerts tropic effects on salivary epithelial cells. We examined EGF-mediated signaling pathways in the salivary epithelial cells of patients with Sjögren’s syndrome (SS). We compared the immunohistochemical expression of EGF receptor (EGF-R), phosphatidylinositol 3-kinase (PI3K), Akt and nuclear factor kappa B (NF-κB) in the labial salivary glands of SS patients (n = 6) with those of control subjects (n = 2). EGF-mediated signaling pathways were further studied in vitro (n = 3) using primary salivary epithelial cells; NF-κB p65 nuclear translocation and Akt phosphorylation were examined by immunofluorescence and western blotting, respectively. The phosphorylation of EGF-R and Akt, and the nuclear expression of NF-κB p65, were increased in situ in the salivary epithelial cells of SS patients compared with those of control subjects. Epidermal growth factor induced rapid EGF-R phosphorylation and NF-κB p65 nuclear translocation in primary salivary epithelial cells in vitro. However, EGF also induced late Akt phosphorylation (after 12 h). Chemical inhibition of PI3K-Akt by LY294002/wortmannin did not affect EGF-mediated NF-κB p65 nuclear translocation; and NF-κB inhibition by Bay 11-7082 did not suppress Akt phosphorylation. Our data suggest that EGF stimulates both the PI3K-Akt pathway and NF-κB via distinct mechanisms, promoting tropic effects in SS salivary epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APS:

Aminopropyltriethoxysilane

DAB:

3.3′-diaminobenzidine

DR4:

Death receptor 4

ECL:

Enhanced chemiluminescence

EGF:

Epidermal growth factor

EGF-R:

EGF receptor

FITC:

Fluorescein isothiocyanate

IKK:

IkappaB kinase

NF-κB:

Nuclear factor kappa B

NGF:

Nerve growth factor

PBS:

Phosphate buffered saline

PDGF:

Platelet-derived growth factor

PFA:

Paraformaldehyde

PI3K:

Phosphatidylinositol 3-kinase

PMSF:

Polymethylsulfonylfluoride

PVDF:

Polyvinylidene fluoride

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SS:

Sjögren’s syndrome

TBS:

Tris-buffered saline

TNF:

Tumor necrosis factor

TRITC:

Tetramethyl rhodamine isothiocyanate

References

  1. Fox RI, Stern M, Michelson P (2000) Update in Sjögren’s syndrome. Curr Opin Rheumtol 12:391–398

    Article  CAS  Google Scholar 

  2. Kong L, Ogawa N, Nakabayashi T, Liu GT, D’Souza E, McGuff HS et al (1997) Fas and Fas ligand expression in the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum 40:87–97

    Article  PubMed  CAS  Google Scholar 

  3. Nakamura H, Koji T, Tominaga M, Kawakami A, Migita K, Kawabe Y et al (1998) Apoptosis in labial salivary glands from Sjögren’s syndrome (SS) patients: comparison with human T lymphotropic virus-I (HTLV-I)-seronegative and -seropositive SS patients. Clin Exp Immunol 114:106–112

    Article  PubMed  CAS  Google Scholar 

  4. Mullighan CG, Heatley S, Lester S, Rischmueller M, Gordon TP, Bardy PG (2004) Fas gene promoter polymorphisms in primary Sjögren’s syndrome. Ann Rheum Dis 63:98–101

    Article  PubMed  CAS  Google Scholar 

  5. Jonsson R, Gordon TP, Konttinen YT (2003) Recent advances in understanding molecular mechanisms in the pathogenesis and antibody profile of Sjögren’s syndrome. Curr Rheumatol Rep 5:311–316

    Article  PubMed  Google Scholar 

  6. Ohlsson M, Szodoray P, Loro LL, Johannessen AC, Jonsson R (2002) CD40, CD154, Bax and Bcl-2 expression in Sjögren’s syndrome salivary glands: a putative anti-apoptotic role during its effector phases. Scand J Immunol 56:561–571

    Article  PubMed  CAS  Google Scholar 

  7. Polihronis M, Tapinos NI, Theocharis SE, Economou A, Kittas C, Moutsopoulos HM (1998) Modes of epithelial cell death and repair in Sjögren’s syndrome (SS). Clin Exp Immunol 114:485–490

    Article  PubMed  CAS  Google Scholar 

  8. Yamamura Y, Onodera K, Ichinohasama R, Ooya K (2000) A histopathological study of lymphoepithelial island formation in labial salivary glands in patients with primary Sjögren’s syndrome. J Oral Pathol Med 29:110–117

    Article  PubMed  CAS  Google Scholar 

  9. Gorgoulis V, Giatromanolaki A, Iliopoulos A, Kanavaros P, Aninos D, Ioakeimidis D et al (1993) EGF and EGF-R immunoexpression in Sjögren’s syndrome secondary to rheumatoid arthritis. Correlation with EBV expression? Clin Exp Rheumatol 11:623–627

    PubMed  CAS  Google Scholar 

  10. Anest V, Cogswell PC, Baldwin AS Jr (2004) IkappaB kinase alpha and p65/RelA contribute to optimal epidermal growth factor-induced c-fos gene expression independent of IkappaBalpha degradation. J Biol Chem 279:31183–31189

    Article  PubMed  CAS  Google Scholar 

  11. Kitagawa K, Hamada Y, Kato Y, Nakai K, Nishizawa M, Ito S et al (2004) Epidermal growth factor and interleukin-1beta synergistically stimulate the production of nitric oxide in rat intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 287:G1188–G1193

    Article  PubMed  CAS  Google Scholar 

  12. Dhar A, Young MR, Colburn NH (2002) The role of AP-1, NF-kappaB and ROS/NOS in skin carcinogenesis: the JB6 model is predictive. Mol Cell Biochem 234–235:185–193

    Article  PubMed  Google Scholar 

  13. Navolanic PM, Steelman LS, McCubrey JA (2003) EGFR family signaling and its association with breast cancer development and resistance to chemotherapy (Review). Int J Oncol 22:237–252

    PubMed  CAS  Google Scholar 

  14. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22:8983–8998

    Article  PubMed  CAS  Google Scholar 

  15. Viatour P, Merville MP, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52

    Article  PubMed  CAS  Google Scholar 

  16. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401:86–90

    Article  PubMed  CAS  Google Scholar 

  17. Gustin JA, Ozes ON, Akca H, Pincheira R, Mayo LD, Li Q et al (2004) Cell type-specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-kappa B activation. J Biol Chem 279:1615–1620

    Article  PubMed  CAS  Google Scholar 

  18. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE et al (2002) Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American–European consensus group. Ann Rheum Dis 61:554–558

    Article  PubMed  CAS  Google Scholar 

  19. Ogawa N, Ping L, Zhenjun L, Takada Y, Sugai S (2002) Involvement of the interferon-gamma-induced T cell-attracting chemokines, interferon-gamma-inducible 10 kd protein (CXCL10) and monokine induced by interferon-gamma (CXCL9), in the salivary gland lesions of patients with Sjögren’s syndrome. Arthritis Rheum 46:2730–2741

    Article  PubMed  CAS  Google Scholar 

  20. Ping L, Ogawa N, Sugai S (2005) Novel role of CD40 in fas-dependent apoptosis of cultured salivary epithelial cells from patients with Sjögren’s syndrome. Arthritis Rheum 52:573–581

    Article  PubMed  CAS  Google Scholar 

  21. Nakamura H, Eguchi K, Nakamura T, Mizokami A, Shirabe S, Kawakami A et al (1997) High prevalence of Sjögren’s syndrome in patients with HTLV-I associated myelopathy. Ann Rheum Dis 56:167–172

    PubMed  CAS  Google Scholar 

  22. Nakamura H, Kawakami A, Tominaga M, Migita K, Kawabe Y, Nakamura T et al (1999) Expression of CD40/CD40 ligand and Bcl-2 family proteins in labial salivary glands of patients with Sjögren’s syndrome. Lab Invest 79:261–269

    PubMed  CAS  Google Scholar 

  23. Matsumura R, Kagami M, Tomioka H, Tanabe E, Sugiyama T, Sueishi M et al (1996) Expression of ductal Fas antigen in sialoadenitis of Sjögren’s syndrome. Clin Exp Rheumatol 14:309–311

    PubMed  CAS  Google Scholar 

  24. Ahn JY, Rong R, Liu X, Ye K (2004) PIKE/nuclear PI 3-kinase signaling mediates the antiapoptotic actions of NGF in the nucleus. EMBO J 23:3995–4006

    Article  PubMed  CAS  Google Scholar 

  25. Keates S, Keates AC, Katchar K, Peek RM Jr, Kelly CP (2007) Helicobacter pylori Induces up-regulation of the epidermal growth factor receptor in AGS gastric epithelial cells. J Infect Dis. 196:95–103

    Article  PubMed  CAS  Google Scholar 

  26. Nakamura H, Kawakami A, Yamasaki S, Kawabe Y, Nakamura T, Eguchi K (1999) Expression of mitogen activated protein kinases in labial salivary glands of patients with Sjögren’s syndrome. Ann Rheum Dis. 58:382–385

    Article  PubMed  CAS  Google Scholar 

  27. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumor necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85

    Article  PubMed  CAS  Google Scholar 

  28. Dhawan P, Singh AB, Ellis DL, Richmond A (2002) Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res 62:7335–7442

    PubMed  CAS  Google Scholar 

  29. Kao SJ, Lei HC, Kuo CT, Chang MS, Chen BC, Chang YC et al (2005) Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology 115:366–374

    Article  PubMed  CAS  Google Scholar 

  30. Meng F, Liu L, Chin PC, D’Mello SR (2002) Akt is a downstream target of NF-kappa B. J Biol Chem 277:29674–29680

    Article  PubMed  CAS  Google Scholar 

  31. Wang HQ, Quan T, He T, Franke TF, Voorhees JJ, Fisher GJ (2003) Epidermal growth factor receptor-dependent, NF-kappaB-independent activation of the phosphatidylinositol 3-kinase/Akt pathway inhibits ultraviolet irradiation-induced caspases-3, -8, and -9 in human keratinocytes. J Biol Chem 278:45737–45745

    Article  PubMed  CAS  Google Scholar 

  32. Ackland ML, Newgreen DF, Fridman M, Waltham MC, Arvanitis A, Minichiello J et al (2003) Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells. Lab Invest 83:435–448

    PubMed  CAS  Google Scholar 

  33. Nakamura H, Kawakami A, Ida H, Koji T, Eguchi K. Epidermal growth factor inhibits Fas-mediated apoptosis in salivary epithelial cells of patients with Sjögren’s syndrome accepted in Clin Exp Rheumatol

Download references

Acknowledgments

The authors would like to thank Dr. Noriyoshi Ogawa from the Third Department of Internal Medicine, Hamamatsu Medical University, for advice regarding the primary cell culture of epithelial cells obtained from minor salivary gland biopsy. We would also like to thank Dr. Yoshitaka Hishikawa from the Division of Histology and Cell Biology, Department of Developmental and Reconstructive Medicine, Graduate School of Biomedical Sciences, Nagasaki University, for his kind advice and technical instruction of pixel intensity measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, H., Kawakami, A., Ida, H. et al. EGF activates PI3K-Akt and NF-κB via distinct pathways in salivary epithelial cells in Sjögren’s syndrome. Rheumatol Int 28, 127–136 (2007). https://doi.org/10.1007/s00296-007-0411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-007-0411-9

Keywords

Navigation