Skip to main content

Advertisement

Log in

Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Dickkopf-3 (DKK3) is a secreted glycoprotein of the Dickkopf family (DKK1–4) that modulates Wnt signalling. DKK3 has been reported to regulate cell development, proliferation, apoptosis, and immune response. However, the functional role of DKK3 in cardiac remodelling after myocardial infarction (MI) has not yet been elucidated. This study aimed to explore the functional significance of DKK3 in the regulation of post-MI remodelling and its underlying mechanisms. MI was induced by surgical left anterior descending coronary artery ligation in transgenic mice expressing cardiac-specific DKK3 and DKK3 knockout (KO) mice as well as their non-transgenic and DKK3+/+ littermates. Our results demonstrated that after MI, mice with DKK3 deficiency had increased mortality, greater infarct size, and exacerbated left ventricular (LV) dysfunction. Significantly, at 1 week post-MI, the hearts of DKK3-KO mice exhibited increased apoptosis, inflammation, and LV remodelling compared with the hearts of their DKK3+/+ littermates. Conversely, DKK3 overexpression led to the opposite phenotype after infarction. Similar results were observed in cultured neonatal rat cardiomyocytes exposed to hypoxia in vitro. Mechanistically, DKK3 promotes cardioprotection by interrupting the ASK1–JNK/p38 signalling cascades. In conclusion, our results indicate that DKK3 protects against the development of MI-induced cardiac remodelling via negative regulation of the ASK1–JNK/p38 signalling pathway. Thus, our study suggests that DKK3 may represent a potential therapeutic target for the treatment of heart failure after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abarzua F, Sakaguchi M, Takaishi M, Nasu Y, Kurose K, Ebara S, Miyazaki M, Namba M, Kumon H, Huh NH (2005) Adenovirus-mediated overexpression of REIC/Dkk-3 selectively induces apoptosis in human prostate cancer cells through activation of c-Jun-NH2-kinase. Cancer Res 65:9617–9622. doi:10.1158/0008-5472.CAN-05-0829

    Article  CAS  PubMed  Google Scholar 

  2. Abe J, Baines CP, Berk BC (2000) Role of mitogen-activated protein kinases in ischemia and reperfusion injury: the good and the bad. Circ Res 86:607–609

    Article  CAS  PubMed  Google Scholar 

  3. Barancik M, Htun P, Strohm C, Kilian S, Schaper W (2000) Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol 35:474–483

    Article  CAS  PubMed  Google Scholar 

  4. Barrantes Idel B, Montero-Pedrazuela A, Guadano-Ferraz A, Obregon MJ, Martinez de Mena R, Gailus-Durner V, Fuchs H, Franz TJ, Kalaydjiev S, Klempt M, Holter S, Rathkolb B, Reinhard C, Morreale de Escobar G, Bernal J, Busch DH, Wurst W, Wolf E, Schulz H, Shtrom S, Greiner E, Hrabe de Angelis M, Westphal H, Niehrs C (2006) Generation and characterization of dickkopf3 mutant mice. Mol Cell Biol 26:2317–2326. doi:10.1128/MCB.26.6.2317-2326.2006

    Article  PubMed  Google Scholar 

  5. Bharti K, Gasper M, Ou J, Brucato M, Clore-Gronenborn K, Pickel J, Arnheiter H (2012) A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development. PLoS Genet 8:e1002757. doi:10.1371/journal.pgen.1002757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chen K, Gao L, Liu Y, Zhang Y, Jiang DS, Wei X, Zhu XH, Zhang R, Chen Y, Yang Q, Kioka N, Zhang XD, Li H (2013) Vinexin-beta protects against cardiac hypertrophy by blocking the Akt-dependent signalling pathway. Basic Res Cardiol 108:338. doi:10.1007/s00395-013-0338-0

    Article  PubMed  Google Scholar 

  7. Dorn GW 2nd (2009) Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res 81:465–473. doi:10.1093/cvr/cvn243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dorn GW 2nd (2009) Novel pharmacotherapies to abrogate postinfarction ventricular remodeling. Nat Rev Cardiol 6:283–291. doi:10.1038/nrcardio.2009.12

    Article  CAS  PubMed  Google Scholar 

  9. Engelbrecht AM, Niesler C, Page C, Lochner A (2004) p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res Cardiol 99:338–350. doi:10.1007/s00395-004-0478-3

    Article  CAS  PubMed  Google Scholar 

  10. Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265. doi:10.1038/nrcardio.2014.28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81:474–481. doi:10.1093/cvr/cvn292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ghosh S, Hayden MS (2008) New regulators of NF-κB in inflammation. Nat Rev Immunol 8:837–848. doi:10.1038/nri2423

    Article  CAS  PubMed  Google Scholar 

  13. Gordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 108:1122–1132. doi:10.1161/CIRCRESAHA.110.226928

    Article  CAS  PubMed  Google Scholar 

  14. Hamid T, Guo SZ, Kingery JR, Xiang X, Dawn B, Prabhu SD (2011) Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure. Cardiovasc Res 89:129–138. doi:10.1093/cvr/cvq274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi:10.1016/S0140-6736(14)60107-0

    Article  PubMed  Google Scholar 

  16. Heusch P, Canton M, Aker S, van de Sand A, Konietzka I, Rassaf T, Menazza S, Brodde OE, Di Lisa F, Heusch G, Schulz R (2010) The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br J Pharmacol 160:1408–1416. doi:10.1111/j.1476-5381.2010.00793.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hreniuk D, Garay M, Gaarde W, Monia BP, McKay RA, Cioffi CL (2001) Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol 59:867–874

    CAS  PubMed  Google Scholar 

  18. Jiang DS, Bian ZY, Zhang Y, Zhang SM, Liu Y, Zhang R, Chen Y, Yang Q, Zhang XD, Fan GC, Li H (2013) Role of interferon regulatory factor 4 in the regulation of pathological cardiac hypertrophy. Hypertension 61:1193–1202. doi:10.1161/HYPERTENSIONAHA.111.00614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jiang DS, Li L, Huang L, Gong J, Xia H, Liu X, Wan N, Wei X, Zhu X, Chen Y, Chen X, Zhang XD, Li H (2014) Interferon regulatory factor 1 is required for cardiac remodeling in response to pressure overload. Hypertension 64:77–86. doi:10.1161/HYPERTENSIONAHA.114.03229

    Article  CAS  PubMed  Google Scholar 

  20. Jiang DS, Wei X, Zhang XF, Liu Y, Zhang Y, Chen K, Gao L, Zhou H, Zhu XH, Liu PP, Bond Lau W, Ma X, Zou Y, Zhang XD, Fan GC, Li H (2014) IRF8 suppresses pathological cardiac remodelling by inhibiting calcineurin signalling. Nat Commun 5:3303. doi:10.1038/ncomms4303

    PubMed Central  PubMed  Google Scholar 

  21. Jiang DS, Zhang XF, Gao L, Zong J, Zhou H, Liu Y, Zhang Y, Bian ZY, Zhu LH, Fan GC, Zhang XD, Li H (2014) Signal regulatory protein-alpha protects against cardiac hypertrophy via the disruption of toll-like receptor 4 signaling. Hypertension 63:96–104. doi:10.1161/HYPERTENSIONAHA.113.01506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Joffe SW, Webster K, McManus DD, Kiernan MS, Lessard D, Yarzebski J, Darling C, Gore JM, Goldberg RJ (2013) Improved survival after heart failure: a community-based perspective. J Am Heart Assoc 2:e000053. doi:10.1161/JAHA.113.000053

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kaiser RA, Liang Q, Bueno O, Huang Y, Lackey T, Klevitsky R, Hewett TE, Molkentin JD (2005) Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia–reperfusion-induced cell death in vivo. J Biol Chem 280:32602–32608. doi:10.1074/jbc.M500684200

    Article  CAS  PubMed  Google Scholar 

  24. Kawano Y, Kitaoka M, Hamada Y, Walker MM, Waxman J, Kypta RM (2006) Regulation of prostate cell growth and morphogenesis by Dickkopf-3. Oncogene 25:6528–6537. doi:10.1038/sj.onc.1209661

    Article  CAS  PubMed  Google Scholar 

  25. Lee EJ, Jo M, Rho SB, Park K, Yoo YN, Park J, Chae M, Zhang W, Lee JH (2009) Dkk3, downregulated in cervical cancer, functions as a negative regulator of beta-catenin. Int J Cancer 124:287–297. doi:10.1002/ijc.23913

    Article  CAS  PubMed  Google Scholar 

  26. Li HL, Zhuo ML, Wang D, Wang AB, Cai H, Sun LH, Yang Q, Huang Y, Wei YS, Liu PP, Liu DP, Liang CC (2007) Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation 115:1885–1894. doi:10.1161/CIRCULATIONAHA.106.656835

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q, Sargent MA, York AJ, Molkentin JD (2009) ASK1 regulates cardiomyocyte death but not hypertrophy in transgenic mice. Circ Res 105:1110–1117. doi:10.1161/CIRCRESAHA.109.200741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lu J, Bian ZY, Zhang R, Zhang Y, Liu C, Yan L, Zhang SM, Jiang DS, Wei X, Zhu XH, Chen M, Wang AB, Chen Y, Yang Q, Liu PP, Li H (2013) Interferon regulatory factor 3 is a negative regulator of pathological cardiac hypertrophy. Basic Res Cardiol 108:326. doi:10.1007/s00395-012-0326-9

    Article  PubMed  Google Scholar 

  29. Mallarino R, Campas O, Fritz JA, Burns KJ, Weeks OG, Brenner MP, Abzhanov A (2012) Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. Proc Natl Acad Sci USA 109:16222–16227. doi:10.1073/pnas.1206205109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Muslin AJ (2008) MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond) 115:203–218. doi:10.1042/CS20070430

    Article  CAS  Google Scholar 

  31. Nakamura RE, Hunter DD, Yi H, Brunken WJ, Hackam AS (2007) Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina. BMC Cell Biol 8:52. doi:10.1186/1471-2121-8-52

    Article  PubMed Central  PubMed  Google Scholar 

  32. Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553. doi:10.1161/01.RES.0000130526.20854.fa

    Article  CAS  PubMed  Google Scholar 

  33. Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25:7469–7481. doi:10.1038/sj.onc.1210054

    Article  CAS  PubMed  Google Scholar 

  34. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367. doi:10.1016/S0140-6736(06)68074-4

    Article  PubMed  Google Scholar 

  35. Papatriantafyllou M, Moldenhauer G, Ludwig J, Tafuri A, Garbi N, Hollmann G, Kublbeck G, Klevenz A, Schmitt S, Pougialis G, Niehrs C, Grone HJ, Hammerling GJ, Arnold B, Oelert T (2012) Dickkopf-3, an immune modulator in peripheral CD8 T-cell tolerance. Proc Natl Acad Sci USA 109:1631–1636. doi:10.1073/pnas.1115980109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507–1546. doi:10.1152/physrev.00054.2009

    Article  CAS  PubMed  Google Scholar 

  37. Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G (2002) p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res 55:690–700

    Article  CAS  PubMed  Google Scholar 

  38. Shen DF, Tang QZ, Yan L, Zhang Y, Zhu LH, Wang L, Liu C, Bian ZY, Li H (2010) Tetrandrine blocks cardiac hypertrophy by disrupting reactive oxygen species-dependent ERK1/2 signalling. Br J Pharmacol 159:970–981. doi:10.1111/j.1476-5381.2009.00605.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Shishido T, Nozaki N, Yamaguchi S, Shibata Y, Nitobe J, Miyamoto T, Takahashi H, Arimoto T, Maeda K, Yamakawa M, Takeuchi O, Akira S, Takeishi Y, Kubota I (2003) Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation 108:2905–2910. doi:10.1161/01.CIR.0000101921.93016.1C

    Article  CAS  PubMed  Google Scholar 

  40. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    Article  CAS  PubMed  Google Scholar 

  41. Takeda K, Matsuzawa A, Nishitoh H, Ichijo H (2003) Roles of MAPKKK ASK1 in stress-induced cell death. Cell Struct Funct 28:23–29

    Article  CAS  PubMed  Google Scholar 

  42. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Katus HA, Lindahl B, Morrow DA, Clemmensen PM, Johanson P, Hod H, Underwood R, Bax JJ, Bonow RO, Pinto F, Gibbons RJ, Fox KA, Atar D, Newby LK, Galvani M, Hamm CW, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasche P, Ravkilde J, Ohman EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML, Januzzi JL, Nieminen MS, Gheorghiade M, Filippatos G, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wood D, Smith SC, Hu D, Lopez-Sendon JL, Robertson RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vasilieva EJ, Mendis S, Joint ESCAAHAWHFTFftUDoMI (2012) Third universal definition of myocardial infarction. Circulation 126:2020–2035. doi:10.1161/CIR.0b013e31826e1058

    Article  PubMed  Google Scholar 

  43. Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y, de Kleijn DP (2012) The innate immune response in reperfused myocardium. Cardiovasc Res 94:276–283. doi:10.1093/cvr/cvs018

    Article  CAS  PubMed  Google Scholar 

  44. Tudzarova S, Trotter MW, Wollenschlaeger A, Mulvey C, Godovac-Zimmermann J, Williams GH, Stoeber K (2010) Molecular architecture of the DNA replication origin activation checkpoint. EMBO J 29:3381–3394. doi:10.1038/emboj.2010.201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Urashima T, Zhao M, Wagner R, Fajardo G, Farahani S, Quertermous T, Bernstein D (2008) Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol 295:H1351–H1368. doi:10.1152/ajpheart.91526.2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30–37. doi:10.1038/nrcardio.2009.199

    Article  PubMed  Google Scholar 

  47. Wysoczynski M, Solanki M, Borkowska S, van Hoose P, Brittian KR, Prabhu SD, Ratajczak MZ, Rokosh G (2014) Complement component 3 is necessary to preserve myocardium and myocardial function in chronic myocardial infarction. Stem Cells 32:2502–2515. doi:10.1002/stem.1743

    Article  CAS  PubMed  Google Scholar 

  48. Xiao J, Moon M, Yan L, Nian M, Zhang Y, Liu C, Lu J, Guan H, Chen M, Jiang D, Jiang H, Liu PP, Li H (2012) Cellular FLICE-inhibitory protein protects against cardiac remodelling after myocardial infarction. Basic Res Cardiol 107:239. doi:10.1007/s00395-011-0239-z

    Article  PubMed  Google Scholar 

  49. Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, Takeda T, Watanabe T, Asahi M, Taniike M, Matsumura Y, Tsujimoto I, Hongo K, Kusakari Y, Kurihara S, Nishida K, Ichijo H, Hori M, Otsu K (2003) Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci USA 100:15883–15888. doi:10.1073/pnas.2136717100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Liu X, She ZG, Jiang DS, Wan N, Xia H, Zhu XH, Wei X, Zhang XD, Li H (2014) Interferon regulatory factor 9 is an essential mediator of heart dysfunction and cell death following myocardial ischemia/reperfusion injury. Basic Res Cardiol 109:434. doi:10.1007/s00395-014-0434-9

    Article  PubMed  Google Scholar 

  52. Zhang Y, Liu Y, Zhu XH, Zhang XD, Jiang DS, Bian ZY, Zhang XF, Chen K, Wei X, Gao L, Zhu LH, Yang Q, Fan GC, Lau WB, Ma X, Li H (2014) Dickkopf-3 attenuates pressure overload-induced cardiac remodelling. Cardiovasc Res 102:35–45. doi:10.1093/cvr/cvu004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Takahisa Furukawa (Osaka Bioscience Institute, Japan) for generously providing DKK3-KO mice (129S6/SvEvTac-Dkk3<tm1Tfur>, 129 background). This work was supported by Grants from the National Science Fund for Distinguished Young Scholars (No. 81425005), the National Natural Science Foundation of China (No. 81170086), National Science and Technology Support Project (No. 2011BAI15B02, No. 2012BAI39B05, No. 2013YQ030923-05, 2014BAI02B01, and 2015BAI08B01), the Key Project of the National Natural Science Foundation (No. 81330005), the National Basic Research Program China (No. 2011CB503902), and Natural Science Foundation of Hubei Province (2013CFB259).

Conflict of interest

No conflicts of interest were declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Li.

Additional information

M.-W. Bao, Z. Cai, and X.-J. Zhang are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, MW., Cai, Z., Zhang, XJ. et al. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction. Basic Res Cardiol 110, 25 (2015). https://doi.org/10.1007/s00395-015-0481-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0481-x

Keywords

Navigation