Skip to main content
Log in

Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The presence and distribution of P2Y (nucleotide) receptor subtypes in rat sensory neurons has been investigated. RT-PCR showed that P2Y1, P2Y2, P2Y4 and P2Y6 receptor mRNA is expressed in sensory ganglia [dorsal root ganglion (DRG), nodose ganglion (NG) and trigeminal ganglion (TG)]. The regional and cellular distribution of P2Y1 and P2Y4 receptor proteins in these ganglia was investigated using immunohistochemistry. P2Y1 polyclonal antibodies stained over 80% of the sensory neurons, particularly the small-diameter (neurofilament-negative) neurons. The P2Y4 receptor antibody stained more medium- and large- (neurofilament-positive) diameter neurons than small-diameter neurons. P2Y1 and P2Y4 receptor immunoreactivity (P2Y1-IR and P2Y4-IR) was often coexpressed with P2X3 receptor immunoreactivity (P2X3-IR) in subpopulations of neurons. Double immunohistochemistry showed that 73–84% of P2X3 receptor-positive neurons also stained for the P2Y1 receptor in DRG, TG and NG while only 25–35% also stained for the P2Y4 receptor. Subpopulations of P2Y1-IR neurons were coexpressed with NF200, CGRP and IB4; most P2Y4-IR neurons were coexpressed with NF200, while only a few neurons were coexpressed with CGRP (10–20%) or with IB4 (1–2%). The results suggest that P2Y as well as P2X receptor subtypes contribute to purinergic signalling in sensory ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2A–F
Fig. 3A–H
Fig. 4A–G
Fig. 5A–F
Fig. 6A–F

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    CAS  PubMed  Google Scholar 

  • Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA, Burnstock G (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24:52–55

    Article  CAS  PubMed  Google Scholar 

  • Ambalavanar R, Morris R (1993) An ultrastructural study of the binding of an alpha-d-galactose specific lectin from Griffonia simplicifolia to trigeminal ganglion neurons and the trigeminal nucleus caudalis in the rat. Neuroscience 52:699–709

    Article  CAS  PubMed  Google Scholar 

  • Averill S, McMahon SB, Clary DO, Reichardt LF, Priestley JV (1995) Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur J Neurosci 7:1484–1494

    CAS  PubMed  Google Scholar 

  • Bland-Ward PA, Humphrey PP (2000) P2X receptors mediate ATP-induced primary nociceptive neurone activation. J Auton Nerv Syst 81:146–151

    CAS  PubMed  Google Scholar 

  • Borvendeg SJ, Gerevich Z, Gillen C, Illes P (2003) P2Y receptor-mediated inhibition of voltage-dependent Ca2+ channels in rat dorsal root ganglion neurons. Synapse 47:159–161

    Article  CAS  PubMed  Google Scholar 

  • Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12:256–268

    CAS  Google Scholar 

  • Burnstock G (2001) Purine-mediated signaling in pain and visceral perception. Trends Pharmacol Sci 22:182–188

    CAS  PubMed  Google Scholar 

  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing 2 types of P2-purinoceptor? Gen Pharmacol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    CAS  PubMed  Google Scholar 

  • Cockayne DA, Hamilton SG, Zhu Q-M, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (2000) Urinary bladder hyporeflexia and reduced pain-related behavior in P2X3-deficient mice. Nature 407:1011–1015

    Article  CAS  PubMed  Google Scholar 

  • Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM (2001) Identification of a novel human ADP receptor coupled to Gi. J Biol Chem 276:41479–41485

    Article  Google Scholar 

  • Ding Y, Cesare P, Drew L, Nikitaki D, Wood JN (2000) ATP, P2X receptors and pain pathways. J Auton Nerv Syst 81:289–294

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SG, McMahon SB (2000) ATP as a peripheral mediator of pain. J Auton Nerv Syst 81:187–194

    CAS  PubMed  Google Scholar 

  • Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    Google Scholar 

  • King BF, Burnstock G (2002) Purinergic receptors. In: Pangalos M, Davies C (eds) Understanding G protein-coupled receptors and their role in the CNS. Oxford University Press, Oxford, pp 422–438

  • Kitchener PD, Wilson P, Snow PJ (1993) Selective labelling of primary sensory afferent terminals in lamina II of the dorsal horn by injection of Bandeiraea Simplicifolia isolectin B4 into peripheral nerves. Neuroscience 54:545–551

    Article  CAS  PubMed  Google Scholar 

  • Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41–63

    CAS  PubMed  Google Scholar 

  • Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435

    Google Scholar 

  • McCarthy PW, Lawson SN (1990) Cell type and conduction velocity of rat primary sensory neurons with calcitonin gene-related peptide-like immunoreactivity. Neuroscience 34:623–632

    CAS  PubMed  Google Scholar 

  • McCarthy PW, Lawson SN (1997) Differing action potential shapes in rat dorsal root ganglion neurones related to their substance P and calcitonin gene-related peptide immunoreactivity. J Comp Neurol 388:541–549

    Article  CAS  PubMed  Google Scholar 

  • McMahon SB, Armanini MP, Ling LH, Phillips HS (1994) Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 12:1161–1171

    CAS  PubMed  Google Scholar 

  • Molliver DC, Radeke MJ, Feinstein SC, Snider WD (1995) Presence or absence of TrkA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections. J Comp Neurol 361:404–416

    CAS  PubMed  Google Scholar 

  • Nakamura F, Strittmatter SM (1996) P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci U S A 93:10465–10470

    Article  CAS  PubMed  Google Scholar 

  • Perry MJ, Lawson SN, Robertson J (1991) Neurofilament immunoreactivity in populations of rat primary afferent neurons: a quantitative study of phosphorylated and non-phosphorylated subunits. J Neurocytol 20:746–758

    CAS  PubMed  Google Scholar 

  • Petruska JC, Cooper BY, Gu JG, Rau KK, Johnson RD (2000) Distribution of P2X1, P2X2, and P2X3 receptor subunits in rat primary afferents: relation to population markers and specific cell types. J Chem Neuroanat 20:141–162

    CAS  Google Scholar 

  • Plenderleith MB, Snow PJ (1993) The plant lectin Bandeiraea simplicifolia I-B4 identifies a subpopulation of small diameter primary sensory neurones which innervate the skin in the rat. Neurosci Lett 159:17–20

    Article  CAS  PubMed  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  • Rose RD, Rohrlich D (1988) Counting sectioned cells via mathematical reconstruction. J Comp Neurol 272:365–386

    CAS  PubMed  Google Scholar 

  • Sanada M, Yasuda H, Omatsu-Kanbe M, Sango K, Isono T, Matsuura H, Kikkawa R (2002) Increase in intracellular Ca2+ and calcitonin gene-related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion neurons. Neuroscience 111:413–422

    Article  CAS  PubMed  Google Scholar 

  • Silverman JD, Kruger L (1990) Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers. J Neurocytol 19:789–801

    CAS  PubMed  Google Scholar 

  • Snider WD, McMahon SB (1998) Tackling pain at the source: new insights into nociceptors. Neuron 20:629–632

    CAS  PubMed  Google Scholar 

  • Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Boyce S, Hill R, Nebenuis-Oosthuizen D, Smith AJ, Kidd EJ, Wood JN (2000) Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407:1015–1017

    Google Scholar 

  • Streit WJ, Schulte BA, Balentine DJ, Spicer SS (1985) Histochemical localization of galactose-containing glycoconjugates in sensory neurons and their processes in the central and peripheral nervous system of the rat. J Histochem Cytochem 33:1042–1052

    CAS  PubMed  Google Scholar 

  • Strobaek D, Olesen SP, Christophersen P, Dissing S (1996) P2-purinoceptor-mediated formation of inositol phosphates and intracellular Ca2+ transients in human coronary artery smooth muscle cells. Br J Pharmacol 118:1645–1652

    CAS  PubMed  Google Scholar 

  • Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci U S A 98:6951–6956

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Rivero-Melian C, Robertson B, Grant G (1994) Transganglionic transport and binding of the isolectin B4 from Griffonia simplicifolia I in rat primary sensory neurons. Neuroscience 62:539–551

    CAS  PubMed  Google Scholar 

  • Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276:8608–8615

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, H.Z., Burnstock, G. Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem Cell Biol 120, 415–426 (2003). https://doi.org/10.1007/s00418-003-0579-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0579-3

Keywords

Navigation