Skip to main content

Advertisement

Log in

Protein-protein interaction and functionTRPC channels

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Since their identification in the concluding years of the last century, the mammalian transient receptor potential (canonical) (TRPC) channels have remained in the limelight as the primary candidates for the Ca2+ entry pathway activated by the hormones, growth factors, and neurotransmitters that exert their effect through activation of PLC. Although TRPC channels have been shown clearly to mediate, at least in part, receptor-activated Ca2+ entry in literally all cell types, several of their central characteristics, as recorded in expression systems using recombinant channels, differ from those of the native receptor-dependent Ca2+ influx channels. The present review attempts to highlight the interaction of TRPC channels with other proteins, which may explain the variability of TRPC channel activation and regulatory mechanisms observed with the native and recombinant channels. These include the homologous and heterotopous interactions of TRPC channel isoforms, the interaction of TRPC channels with calmodulin, PLCγ, IP3 receptors, and with scaffolding proteins like InaD, EBP50/NEHRF, caveolin, Janctate and Homers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

αSNAP:

α-Soluble N-ethylmaleimide-sensitive factor attachment protein

CaM:

Calmodulin

CaMKII:

Calmodulin kinase II

EBP50:

Ezrin-radixin-moesin-binding protein, 50 kD

EGF:

Epidermal growth factor

ER:

Endoplasmic reticulum

FKBP:

FK506 binding protein

FL:

Full length

GPCR:

G protein-coupled receptor

InaD:

Inactivation no after-potential D

IP3:

Inositol trisphosphate

IP3R:

IP3 receptor

LTP:

Long-term potentiation

mGluR5:

Metabotropic glutamate receptor type 5

NHERF:

Na+/H+ exchanger regulatory factor

NorpA:

No receptor potential A

OAG:

1-oleoyl-2-acetyl-sn-glycerol

PDZ domain:

Postsynaptic density/discs-large/zonula occludens domain

PH domain:

Plekstrin homology domain

PI3K:

Phosphatidylinositol-3-kinase

PIP2:

Phosphatidyl inositol bisphosphate

PKC:

Protein kinase C

PLC:

Phospholipase C

PM:

Plasma membrane

RGS:

Regulator of G protein signaling

SH domain:

Src homology domain

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SPL:

Spinophilin

TRPC:

Mammalian transient receptor potential (canonical) channel

VAMP:

Vesicle-associated membrane protein

References

  1. Vaca L, Sampieri A (2002) Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels. J Biol Chem 277:42178–42187

    Article  PubMed  Google Scholar 

  2. Pla AF, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25:2687–2701

    Article  PubMed  Google Scholar 

  3. Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279:43392–43402

    Article  PubMed  Google Scholar 

  4. Wu X, Babnigg G, Villereal ML (2000) Functional significance of human trp1 and trp3 in store-operated Ca2+ entry in HEK-293 cells. Am J Physiol 278:C526–C536

    Google Scholar 

  5. Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496–505

    Article  PubMed  Google Scholar 

  6. Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca2+ entry in TRPC4−/− mice interferes with increase in lung microvascular permeability. Circ Res 91:70–76

    PubMed  Google Scholar 

  7. Wu X, Babnigg G, Zagranichnaya T, Villereal ML (2002) The role of endogenous human Trp4 in regulating carbachol-induced calcium oscillations in HEK-293 cells. J Biol Chem 277:13597–13608

    PubMed  Google Scholar 

  8. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat Cell Biol 3:121–127

    Article  PubMed  Google Scholar 

  9. Thebault S, Zholos A, Enfissi A, Slomianny C, Dewailly E, Roudbaraki M, Parys J, Prevarskaya N (2005) Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J Cell Physiol 204:320–328

    Article  PubMed  Google Scholar 

  10. Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS (2004) The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry 43:11701–11708

    PubMed  Google Scholar 

  11. Takai Y, Sugawara R, Ohinata H, Takai A (2004) Two types of non-selective cation channel opened by muscarinic stimulation with carbachol in bovine ciliary muscle cells. J Physiol (Lond) 559:899–922

    Google Scholar 

  12. Sydorenko V, Shuba Y, Thebault S, Roudbaraki M, Lepage G, Prevarskaya N, Skryma R (2003) Receptor-coupled, DAG-gated Ca2+-permeable cationic channels in LNCaP human prostate cancer epithelial cells. J Physiol (Lond) 548:823–836

    Article  Google Scholar 

  13. Fasolato C, Nilius B (1998) Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch 436:69–74

    Article  PubMed  Google Scholar 

  14. Hurst RS, Zhu X, Boulay G, Birnbaumer L, Stefani E (1998) Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett 422:333–338

    Article  PubMed  Google Scholar 

  15. Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482

    Article  PubMed  Google Scholar 

  16. Zhu X, Jiang M, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem 273:133–142

    PubMed  Google Scholar 

  17. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  Google Scholar 

  18. Trebak M, Bird GS, McKay RR, Putney JW Jr (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277:21617–21623

    PubMed  Google Scholar 

  19. Vazquez G, Lievremont JP, Bird GStJ, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. Proc Natl Acad Sci USA 98:11777–11782

    Article  PubMed  Google Scholar 

  20. Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA (2002) Signaling microdomains define the specificity of receptor-mediated InsP3 pathways in neurons. Neuron 34:209–220

    Article  PubMed  Google Scholar 

  21. Gudermann T, Hofmann T, Mederos y Schnitzler M, Dietrich A (2004) Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins (discussion 118–122, 155–159, 263–266). Novartis Found Symp 258:103–118

    PubMed  Google Scholar 

  22. Schilling WP, Goel M (2004) Mammalian TRPC channel subunit assembly (discussion 30–43, 98–102, 263–266). Novartis Found Symp 258:18–30

    PubMed  Google Scholar 

  23. Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277:48303–48310

    Article  PubMed  Google Scholar 

  24. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Article  PubMed  Google Scholar 

  25. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    Article  PubMed  Google Scholar 

  26. Venkatachalam K, Zheng F, Gill DL (2004) Control of TRPC and store-operated channels by protein kinase C (discussion 185–8, 263–266). Novartis Found Symp 258:172–185

    PubMed  Google Scholar 

  27. van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH (2005) Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104

    Article  PubMed  Google Scholar 

  28. van de Graaf SFJ, Hoenderop JGJ, Gkika D, Lamers D, Prenen J, Rescher U, Gerke V, Staub O, Nilius B, Bindels RJM (2003) Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J 22:1478–1487

    Article  PubMed  Google Scholar 

  29. Hoenderop JGJ, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJM (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785

    Article  PubMed  Google Scholar 

  30. Li HS, Montell C (2000) TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J Cell Biol 150:1411–1422

    PubMed  Google Scholar 

  31. Chevesich J, Kreuz AJ, Montell C (1997) Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18:95–105

    Article  PubMed  Google Scholar 

  32. Tsunoda S, Sierralta J, Sun Y, Bodner R, Suzuki E, Becker A, Socolich M, Zuker CS (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388:243–249

    Article  PubMed  Google Scholar 

  33. Scott K, Zuker CS (1998) Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature 395:805–808

    Article  PubMed  Google Scholar 

  34. Minke B (2001) The TRP channel and phospholipase C-mediated signaling. Cell Mol Neurobiol 21:629–643

    Article  PubMed  Google Scholar 

  35. Lee MG, Xu X, Zeng W, Diaz J, Kuo TH, Wuytack F, Racymaekers L, Muallem S (1997) Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J Biol Chem 272:15771–15776

    Article  PubMed  Google Scholar 

  36. Lee MG, Xu X, Zeng W, Diaz J, Wojcikiewicz RJ, Kuo TH, Wuytack F, Racymaekers L, Muallem S (1997) Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem 272:15765–15770

    Article  PubMed  Google Scholar 

  37. Bandyopadhyay BC, Swaim WD, Liu X, Redman RS, Patterson RL, Ambudkar IS (2004) Apical localization of a functional TRPC3/TRPC6-Ca2+-signaling complex in polarized epithelial cells: role in apical Ca2+ influx. J Biol Chem 280:12908–12916

    Article  PubMed  Google Scholar 

  38. Sutton KA, Jungnickel MK, Wang Y, Cullen K, Lambert S, Florman HM (2004) Enkurin is a novel calmodulin and TRPC channel binding protein in sperm. Dev Biol 274:426–435

    Article  PubMed  Google Scholar 

  39. Castellano LE, Trevino CL, Rodriguez D, Serrano CJ, Pacheco J, Tsutsumi V, Felix R, Darszon A (2003) Transient receptor potential (TRPC) channels in human sperm: expression, cellular localization and involvement in the regulation of flagellar motility. FEBS Lett 541:69–74

    Article  PubMed  Google Scholar 

  40. Trevino CL, Serrano CJ, Beltran C, Felix R, Darszon A (2001) Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 509:119–125

    Article  PubMed  Google Scholar 

  41. Yao J, Li Q, Chen J, Muallem S (2004) Subpopulation of store-operated Ca2+ channels regulate Ca2+-induced Ca2+ release in non-excitable cells. J Biol Chem 279:21511–21519

    Article  PubMed  Google Scholar 

  42. Li Q, Luo X, Muallem S (2004) Functional mapping of Ca2+ signaling complexes in plasma membrane microdomains of polarized cells. J Biol Chem 279:27837–27840

    Article  PubMed  Google Scholar 

  43. Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Ramesh V, Zhu MX (2000) Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem 275:37559–37564

    PubMed  Google Scholar 

  44. Mery L, Strauss B, Dufour JF, Krause KH, Hoth M (2002) The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. J Cell Sci 115:3497–3508

    PubMed  Google Scholar 

  45. Obukhov AG, Nowycky MC (2004) TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50). J Cell Physiol 201:227–235

    Article  PubMed  Google Scholar 

  46. Wang X, Zeng W, Soyombo AA, Tang W, Ross EM, Barnes AP, Milgram SL, Penninger JM, Allen PB, Greengard P, Muallem S (2005) Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nat Cell Biol 7:405–411

    Article  PubMed  Google Scholar 

  47. Wang X, Huang G, Luo X, Penninger JM, Muallem S (2004) Role of regulator of G protein signaling 2 (RGS2) in Ca2+ oscillations and adaptation of Ca2+ signaling to reduce excitability of RGS2−/− cells. J Biol Chem 279:41642–41649

    Article  PubMed  Google Scholar 

  48. Bers DM (2004) Macromolecular complexes regulating cardiac ryanodine receptor function. J Mol Cell Cardiol 37:417–429

    Article  PubMed  Google Scholar 

  49. Ouimet CC, Katona I, Allen P, Freund TF, Greengard P (2004) Cellular and subcellular distribution of spinophilin, a PP1 regulatory protein that bundles F-actin in dendritic spines. J Comp Neurol 479:374–388

    Article  PubMed  Google Scholar 

  50. Isshiki M, Anderson RG (2003) Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction. Traffic 4:717–723

    Article  PubMed  Google Scholar 

  51. Isshiki M, Anderson RG (1999) Calcium signal transduction from caveolae. Cell Calcium 26:201–208

    Article  PubMed  Google Scholar 

  52. White MA, Anderson RG (2005) Signaling networks in living cells. Annu Rev Pharmacol Toxicol 45:587–603

    Article  PubMed  Google Scholar 

  53. Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278:27208–27215

    Article  PubMed  Google Scholar 

  54. Li WP, Liu P, Pilcher BK, Anderson RG (2001) Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci 114:1397–1408

    PubMed  Google Scholar 

  55. Liu P, Li WP, Machleidt T, Anderson RG (1999) Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol 1:369–375

    Article  PubMed  Google Scholar 

  56. Kiselyov K, Shin DM, Luo X, Ko SB, Muallem S (2002) Ca2+ signaling in polarized exocrine cells. Adv Exp Med Biol 506:175–183

    PubMed  Google Scholar 

  57. Kiselyov K, Shin DM, Muallem S (2003) Signalling specificity in GPCR-dependent Ca2+ signalling. Cell Signal 15:243–253

    Article  PubMed  Google Scholar 

  58. Gerber SH, Sudhof TC (2002) Molecular determinants of regulated exocytosis. Diabetes 51(Suppl1):S3–S11

    PubMed  Google Scholar 

  59. Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:89–101

    Article  PubMed  Google Scholar 

  60. Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294:333–339

    Article  PubMed  Google Scholar 

  61. Chu X, Tong Q, Wozney J, Zhang W, Cheung JY, Conrad K, Mazack V, Stahl R, Barber DL, Miller BA (2005) Identification of an N-terminal TRPC2 splice variant which inhibits calcium influx. Cell Calcium 37:173–182

    Article  PubMed  Google Scholar 

  62. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci USA 96:14955–14960

    Article  PubMed  Google Scholar 

  63. Mery L, Magnino F, Schmidt K, Krause KH, Dufour JF (2001) Alternative splice variants of hTrp4 differentially interact with the C-terminal portion of the inositol 1,4,5-trisphosphate receptors. FEBS Lett 487:377–383

    Article  PubMed  Google Scholar 

  64. Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW Jr (2004) Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528

    Article  PubMed  Google Scholar 

  65. Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894

    Article  PubMed  Google Scholar 

  66. Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol (Lond) 561:415–432

    Article  Google Scholar 

  67. Scott K, Sun Y, Beckingham K, Zuker CS (1997) Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell 91:375–383

    Article  PubMed  Google Scholar 

  68. Arnon A, Cook B, Montell C, Selinger Z, Minke B (1997) Calmodulin regulation of calcium stores in phototransduction of Drosophila. Science 275:1119–11121

    Article  PubMed  Google Scholar 

  69. Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani E, Birnbaumer L, Zhu MX (2001) Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci USA 98:3168–3173

    PubMed  Google Scholar 

  70. Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276:21303–21310

    Article  PubMed  Google Scholar 

  71. Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS (2002) Calmodulin regulates Ca2+-dependent feedback inhibition of store-operated Ca2+ influx by interaction with a site in the C terminus of TrpC1. Mol Cell 9:739–750

    Article  PubMed  Google Scholar 

  72. Moreau B, Straube S, Fisher RJ, Putney JW Jr, Parekh AB (2005) Ca2+-calmodulin-dependent facilitation and Ca2+ inactivation of Ca2+ release-activated Ca2+ channels. J Biol Chem 280:8776–8783

    Article  PubMed  Google Scholar 

  73. Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AG, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell 15:635–646

    Article  PubMed  Google Scholar 

  74. Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001(111):RE19

    PubMed  Google Scholar 

  75. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720

    Article  PubMed  Google Scholar 

  76. Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279:7241–7246

    Article  PubMed  Google Scholar 

  77. Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G (2005) MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. J Biol Chem 280:19393–19400

    Article  PubMed  Google Scholar 

  78. Ratajczak T, Ward BK, Minchin RF (2003) Immunophilin chaperones in steroid receptor signalling. Curr Top Med Chem 3:1348–1357

    PubMed  Google Scholar 

  79. Harrar Y, Bellini C, Faure JD (2001) FKBPs: at the crossroads of folding and transduction. Trends Plant Sci 6:426–431

    Article  PubMed  Google Scholar 

  80. Sinkins WG, Goel M, Estacion M, Schilling WP (2004) Association of immunophilins with mammalian TRPC channels. J Biol Chem 279:34521–34529

    Article  PubMed  Google Scholar 

  81. Ondrias K, Marx SO, Gaburjakova M, Marks AR (1998) FKBP12 modulates gating of the ryanodine receptor/calcium release channel. Ann NY Acad Sci 853:149–156

    PubMed  Google Scholar 

  82. Kiselyov K, Mignery GA, Zhu MX, Muallem S (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4:423–429

    Article  PubMed  Google Scholar 

  83. Birnbaumer L, Boulay G, Brown D, Jiang M, Dietrich A, Mikoshiba K, Zhu X, Qin N (2000) Mechanism of capacitative Ca2+ entry (CCE): interaction between IP3 receptor and TRP links the internal calcium storage compartment to plasma membrane CCE channels (discussion 161–162). Recent Prog Horm Res 55:127–161

    PubMed  Google Scholar 

  84. Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288

    Article  PubMed  Google Scholar 

  85. Beneken J, Tu JC, Xiao B, Nuriya M, Yuan JP, Worley PF, Leahy DJ (2000) Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Neuron 26:143–154

    Article  PubMed  Google Scholar 

  86. Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21:717–726

    Article  PubMed  Google Scholar 

  87. Roderick HL, Bootman MD (2003) Calcium influx: is Homer the missing link? Curr Biol 13:R976–R978

    Article  PubMed  Google Scholar 

  88. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789

    Article  PubMed  Google Scholar 

  89. Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21:707–716

    Article  PubMed  Google Scholar 

  90. Treves S, Franzini-Armstrong C, Moccagatta L, Arnoult C, Grasso C, Schrum A, Ducreux S, Zhu MX, Mikoshiba K, Girard T, Smida-Rezgui S, Ronjat M, Zorzato F (2004) Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion. J Cell Biol 166:537–548

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kirill Kiselyov or Shmuel Muallem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselyov, K., Kim, J.Y., Zeng, W. et al. Protein-protein interaction and functionTRPC channels. Pflugers Arch - Eur J Physiol 451, 116–124 (2005). https://doi.org/10.1007/s00424-005-1442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1442-2

Keywords

Navigation