Skip to main content

Advertisement

Log in

Dinucleoside polyphosphates and their interaction with other nucleotide signaling pathways

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Dinucleoside polyphosphates or ApnA are a family of dinucleotides formed by two adenosines joined by a variable number of phosphates. Ap4A, Ap5A, and Ap6A are stored together with other neurotransmitters into secretory vesicles and are co-released to the extracellular medium upon stimulation. These compounds can interact extracellularly with some ATP receptors, both metabotropic (P2Y) and ionotropic (P2X). However, specific receptors for these substances, other than ATP receptors, have been described in presynaptic terminals form rat midbrain. These specific dinucleotide receptors are of ionotropic nature and their activation induces calcium entry into the terminals and the subsequent neurotransmitter release. Calcium signals that cannot be attributable to the interaction of ApnA with ATP receptors have also been described in cerebellar synaptosomes and granule cell neurons in culture, where Ap5A induces CaMKII activation. In addition, cerebellar astrocytes express a specific Ap5A receptor coupled to ERK activation. Ap5A engaged to MAPK cascade by a mechanism that was insensitive to pertussis toxin and required the involvement of src and ras proteins. Diadenosine polyphosphates, acting on their specific receptors and/or ATP receptors, can also interact with other neurotransmitter systems. This broad range of actions and interactions open a promising perspective for some relevant physiological roles for the dinucleotides. However, the physiological significance of these compounds in the CNS is still to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alvarado-Castillo CP, Harden TK, Boyer JL (2005) Regulation of P2Y1 receptor-mediated by the ecto-nucleoside triphosphate diphosphohydrolase isozymes NTPDase1 and NTPDase 2. Mol Pharmacol 67:114–122

    Article  PubMed  CAS  Google Scholar 

  2. Araque A, Martin ED, Perea G, Arellano JI, Buño W (2002) Synaptically-released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22:243–2450

    Google Scholar 

  3. Baker JC, Jacobson MK (1986) Alteration of adenyl dinucleotide metabolism by environmental stress. Proc Natl Acad Sci U S A 83:2350–2352

    Article  PubMed  CAS  Google Scholar 

  4. Barnes LD, Garrison PN, Siprashvili Z, Guranowski A, Robinson AK, Ingram SW, Croce CM, Ohta M, Huebner K (1996) Fhit, a putative tumor suppressor in humans, is a dinucleoside 5′,5′′′-P1,P3-triphosphate hydrolase. Biochemistry 35:11529–11535

    Article  PubMed  CAS  Google Scholar 

  5. Becher A, White JH, McIlhinney JAJ (2001) The γ-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum. J Neurochem 79:787–795

    Article  PubMed  CAS  Google Scholar 

  6. Borodinsky LN, Coso OA, Fiszman ML (2002) Contribution of Ca2+-calmodulin protein kinase II and mitogen-activated protein kinase kinase to neural activity-induced neurite outgrowth and survival of cerebellar granule cells. J Neurochem 80:1062–1070

    Article  PubMed  CAS  Google Scholar 

  7. Bruses JL, Chauvet N, Rutishauser U (2001) Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 21:504–512

    PubMed  CAS  Google Scholar 

  8. Carrasquero LMG, Delicado EG, Jiménez AI, Pérez-Sen R, Miras-Portugal MT (2005) Cerebellar astrocytes co-express several ADP receptors. Presence of functional P2Y13-like receptors. Purinergic Signalling 1:153–159

    Article  PubMed  CAS  Google Scholar 

  9. Cheung KK, Cahn WY, Burnstock G (2005) Expression of P2X purinoceptors during rat brain development and their inhibitory role of motor axon outgrowth in neural tube explant cultures. Neuroscience 133:937–945

    Article  PubMed  CAS  Google Scholar 

  10. Cunningham ML, Waldo GL, Hollinger S, Hepler JR, Harden TK (2001) Protein kinase C phosphorylates RGS2 and modulates its capacity for negative regulation of Gα11 signaling. J Biol Chem 276:5438–5444

    Article  PubMed  CAS  Google Scholar 

  11. Delicado EG, Carrasquero LMG, Pérez-Sen R, Miras-Portugal MT (2005) Identification of functional P2X7 receptor in rat cerebellar astrocytes. International proceedings of VII European meeting on glial cell function in health and disease, Amsterdam, The Netherlands. Medimond, pp 71–78

  12. Delicado EG, Jiménez AI, Carrasquero LMG, Castro E, Miras-Portugal MT (2005) Cross-talk among epidermal growth factor, Ap5A, and nucleotide receptors causing enhanced ATP Ca2+ signaling involves extracellular kinase activaion in cerebellar astrocytes. J Neurosci Res 81:789–796

    Article  PubMed  CAS  Google Scholar 

  13. Delicado EG, Jiménez AI, Castro E, Miras-Portugal MT (2001) Cerebellar astrocytes coexpress different purinoceptors: cross-talk between several transduction mechanism. Drug Dev Res 52:114–121

    Article  CAS  Google Scholar 

  14. Diaz-Hernandez M, Pereira MF, Pintor J, Cunha RA, Ribeiro JA, Miras-Portugal MT (2002) Modulation of the rat hippocampal dinucleotide receptor by adenosine receptor activation. J Pharmacol Exp Ther 301:441–450

    Article  PubMed  CAS  Google Scholar 

  15. Diaz-Hernandez M, Pintor J, Miras-Portugal MT (2000) Modulation of the dinucleotide receptor present in rat midbrain synaptosomes by adenosine and ATP. Br J Pharmacol 130:434–440

    Article  PubMed  CAS  Google Scholar 

  16. Diaz-Hernandez M, Pintor J, Castro E, Miras-Portugal MT (2001) Independent receptors for diadenosine pentaphosphate and ATP in rat midbrain single synaptic terminals. Eur J Neurosci 14:918–926

    Article  PubMed  CAS  Google Scholar 

  17. Diaz-Hernandez M, Pintor J, Castro E, Miras-Portugal MT (2002) Co-localisation of functional nicotinic and ionotropic nucleotide receptors in isolated cholinergic synaptic terminals. Neuropharmacology 42:20–33

    Article  PubMed  CAS  Google Scholar 

  18. Diaz-Hernandez M, Sanchez-Nogueiro J, Pintor J, Miras-Portugal MT (2004) Interaction between dinucleotide and nicotinic receptors in individual cholinergic terminals. J Pharmacol Exp Ther 311:954–967

    Article  PubMed  CAS  Google Scholar 

  19. Fellin T, Carmignoto G (2004) Neurone-to-astrocyte signaling in the brain represents a distinct multifunctional unit. J Physiol 559:3–14

    Article  PubMed  CAS  Google Scholar 

  20. Fink CC, Meyer T (2002) Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr Opin Neurobiol 12:293–299

    Article  PubMed  CAS  Google Scholar 

  21. Flores NA, Stavrou BM, Sheridan DJ (1999) The effects of diadenosine polyphosphates on the cardiovascular system. Cardiovasc Res 42:15–26

    Article  PubMed  CAS  Google Scholar 

  22. Gaudilliére B, Konishi Y, de la Iglesia, N, Yao G-I, Bonni A (2004) A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41:229–241

    Article  PubMed  Google Scholar 

  23. Giraldez L, Diaz-Hernandez M, Gomez-Villafuertes R, Pintor J, Castro E, Miras-Portugal MT (2001) Adenosine triphosphate and diadenosine pentaphosphate induce [Ca2+]i increase in rat basal ganglia aminergic terminals. J Neurosci Res 64:174–182

    Article  PubMed  CAS  Google Scholar 

  24. Gomez-Villafuertes R, Gualix J, Miras-Portugal MT (2001) Single GABAergic synaptic terminals from rat midbrain exhibit functional P2X and dinucleotide receptors, able to induce GABA secretion. J Neurochem 77:84–93

    Article  PubMed  CAS  Google Scholar 

  25. Gomez-Villafuertes R, Pintor J, Gualix J, Miras-Portugal MT (2004) GABA modulates presynaptic signaling mediated by dinucleotides on rat synaptic terminals. J Pharmacol Exp Ther 308:1148–1157

    Article  PubMed  CAS  Google Scholar 

  26. Grobben B, Claes P, van Kolen K, Roymans D, Fransen P, Sys SU, Slegers H (2001) Agonists of the P2YAC-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 78:1325–1338

    Article  PubMed  CAS  Google Scholar 

  27. Gualix J, Gomez-Villafuertes R, Diaz-Hernandez M, Miras-Portugal MT (2003) Presence of functional ATP and dinucleotide receptors in glutamatergic synaptic terminals from rat midbrain. J Neurochem 87:160–171

    Article  PubMed  CAS  Google Scholar 

  28. Hering H, Lin CC, Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 28:3262–3271

    Google Scholar 

  29. Hervas C, Pérez-Sen R, Miras-Portugal MT (2003) Co-expression of functional P2X and P2Y nucleotide receptors in single cerebellar granule cells. J Neurosci Res 73:384–399

    Article  PubMed  CAS  Google Scholar 

  30. Hervas C, Pérez-Sen R, Miras-Portugal MT (2005) Presence of diverse functional P2X receptors in rat cerebellar synaptic terminals. Biochem Pharmacol 70:770–785

    Article  PubMed  CAS  Google Scholar 

  31. Jankowski J, Hagemann J, Tepel M, van der Giet M, Stephan N, Henning L, Gouni-Berthold H, Sachinidis A, Zidek W, Schlüter H (2001) Dinucleotides as growth-promoting extracellular mediators. Presence of dinucleoside diphosphates Ap2A, Ap2G and Gp2G in releasable granules. J Biol Chem 276:8904–8909

    Article  PubMed  CAS  Google Scholar 

  32. Jiménez AI, Castro E, Delicado EG, Miras-Portugal MT (1998) Potentiation of adenosine 5′-triphosphate calcium responses by diadenosine pentaphosphate in individual rat cerebellar astrocytes. Neurosci Lett 246:109–111

    Article  PubMed  Google Scholar 

  33. Jiménez AI, Castro E, Mirabet M, Franco R, Delicado EG, Miras-Portugal MT (1999) Potentiation of ATP calcium responses by A2B receptors stimulation and other signals coupled to Gs proteins in type-1 cerebellar astrocytes. Glia 26:119–128

    Article  PubMed  Google Scholar 

  34. Jiménez AI, Castro E, Communi D, Boeynaems JM, Delicado EG, Miras-Portugal MT (2000) Coexpression of several types of metabotropic nucleotide receptors in single cerebellar astrocytes. J Neurochem 75:2071–2079

    Article  PubMed  Google Scholar 

  35. Jiménez AI, Castro E, Delicado EG, Miras-Portugal MT (2002) Specific diadenosine pentaphosphate receptor coupled to extracellular regulated kinases in cerebellar astrocytes. J Neurochem 83:299–308

    Article  PubMed  Google Scholar 

  36. John GR, Scemes E, Suadicani SO, Liu JSH, Charles PC, Lee SC, Spray DC, Brosnan CF (1999) IL-1β differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc Natl Acad Sci U S A 96:11613–11618

    Article  PubMed  CAS  Google Scholar 

  37. John GR, Simpson JE, Woodroofe MN, Lee SC, Brosnan CF (2001) Extracellular nucleotides differentially regulate interleukin-1β signaling in primary human astrocytes: implications for inflammatory gene expression. J Neurosci 21:4134–4142

    PubMed  CAS  Google Scholar 

  38. Joseph SM, Buchakjian MR, Dubyak GR (2003) Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 278:23331–23342

    Article  PubMed  CAS  Google Scholar 

  39. Kawamura M, Gachet C, Inoue K, Kato F (2004) Direct excitation of inhibitory interneurons by exracellular ATP mediated by P2Y1 receptors in the hippocampal slices. J Neurosci 24:10835–10845

    Article  PubMed  CAS  Google Scholar 

  40. Kisselev LL, Justesen J, Wolfson AD, Frolova LY (1998) Diadenosine oligophosphates (ApnA), a novel class of signaling molecules? FEBS Lett 427:157–163

    Article  PubMed  CAS  Google Scholar 

  41. Lenz G, Gottfrie C, Luo Z, Avruch J, Rodnight R, Nie WJ, Kang Y, Neary JT (2000) P2Y purinoceptor subtypes recruit different Mek activators in astrocytes. Br J Pharmacol 129:927–936

    Article  PubMed  CAS  Google Scholar 

  42. León D, Hervás C, Miras-Portugal MT (2006) Activation of P2Y1 and P2X7 receptors induce calcium/calmodulin-dependent protein kinase II phosphorylation in cerebellar granule neurons. Eur J Neurosci (In press)

  43. Luttrell LM, Hawes BE, van Biesen T, Luttrell DK, Lansing TJ, Lefkowitz RJ (1996) Role of c-Src tyrosine kinase in G protein-coupled receptor and Gβγ subunit-mediated activation of mitogen-activated protein kinases. J Biol Chem 271:19443–19450

    Article  PubMed  CAS  Google Scholar 

  44. Mateo J, García-Lecea M, Miras-Portugal MT, Castro E (1998) Ca2+ signals mediated by P2X-type purinoceptors in cultured cerebellar Purkinje cells. J Neurosci 18:1704–1712

    PubMed  CAS  Google Scholar 

  45. McLennan AG (2000) Dinucleoside polyphosphates—friend or foe? Pharmacol Ther 87:73–89

    Article  PubMed  CAS  Google Scholar 

  46. Miras-Portugal MT, Gualix J, Pintor J (1998) The neurotransmitter role of diadenosine polyphosphates. FEBS Lett 430:78–82

    Article  PubMed  CAS  Google Scholar 

  47. Ostrom RS, Gregorian C, Insel PA (2000) Cellular release of and response to ATP as key determinants of the set-point of signal transduction pathways. J Biol Chem 275:11735–11739

    Article  PubMed  CAS  Google Scholar 

  48. Pankatrov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by the P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10:3898–3902

    Article  Google Scholar 

  49. Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203

    Article  PubMed  CAS  Google Scholar 

  50. Pintor J, Diaz-Rey MA, Torres M, Miras-Portugal MT (1992) Presence of diadenosine polyphosphates-Ap4A and Ap5A-in rat brain synaptic terminals. Ca2+ dependent release evoked by 4-aminopyridine and veratridine. Neurosci Lett 136:141–144

    Article  PubMed  CAS  Google Scholar 

  51. Pintor J, Gomez-Villafuertes R, Miras-Portugal MT (2001) Pharmacological profile of the dinucleotide receptor present in rat brain isolated synaptic terminals. Anal Pharmacol 2:85–92

    Google Scholar 

  52. Pintor J, Gualix J, Miras-Portugal MT (1997a) Diinosine polyphosphates, a group of dinucleotides with antagonistic effects on diadenosine polyphosphate receptor. Mol Pharmacol 51:277–284

    PubMed  CAS  Google Scholar 

  53. Pintor J, Gualix J, Miras-Portugal MT (1997b) Dinucleotide receptor modulation by protein kinases (protein kinases A and C) and protein phosphatases in rat brain synaptic terminals. J Neurochem 68:2552–2557

    Article  PubMed  CAS  Google Scholar 

  54. Pintor J, Miras-Portugal MT (1995) A novel receptor for diadenosine polyphosphates coupled to calcium increase in rat midbrain synaptosomes. Br J Pharmacol 115:895–902

    PubMed  CAS  Google Scholar 

  55. Pintor J, Miras-Portugal MT (2000) Receptors for diadenosine polyphosphates P2D, P2YApnA, P4 and dinucleotide receptors: are there too many? Trends Pharmacol Sci 21:135

    Article  PubMed  CAS  Google Scholar 

  56. Pintor J, King BF, Miras-Portugal MT, Burnstock G (1996) Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors. Br J Pharmacol 119:1006–1022

    PubMed  CAS  Google Scholar 

  57. Pintor J, Kowalewski HJ, Torres M, Miras-Portugal MT, Zimmermann H (1992b) Synaptic vesicle storage of diadenosine polyphosphates in the Torpedo electric organ. Neurosci Res Commun 10:9–15

    CAS  Google Scholar 

  58. Pintor J, Puche JA, Gualix J, Hoyle CH, Miras-Portugal MT (1997c) Diadenosine polyphosphates evoke Ca2+ transients in guinea-pig brain via receptors distinct from those for ATP. J Physiol 504(Pt 2):327–335

    Article  PubMed  CAS  Google Scholar 

  59. Pivorun EB, Nordone A (1996) Brain synaptosomes display a diadenosine tetraphosphate (Ap4A)-mediated Ca2+ influx distinct from ATP-mediated influx. J Neurosci Res 44:478–489

    Article  PubMed  CAS  Google Scholar 

  60. Plateau P, Blanquet S (1992) Synthesis of NpnN′ (n=3 or 4) in vitro and in vivo. In: McLennan AG (ed) Ap4a and other dinucleotide polyphosphates. CRC, Boca Raton, pp 63–79

    Google Scholar 

  61. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  62. Rodriguez del Castillo A, Torres M, Delicado EG, Miras-Portugal MT (1988) Subcellular distribution studies of diadenosine polyphosphates-Ap4A and Ap5A-in bovine adrenal medulla: presence in chromaffin granules. J Neurochem 51:1696–1703

    Article  PubMed  CAS  Google Scholar 

  63. Rodríguez-Pascual F, Cortes R, Torres M, Palacios JM, Miras-Portugal MT (1997) Distribution of [3H]diadenosine tetraphosphate binding sites in rat brain. Neuroscience 77:247–255

    Article  PubMed  Google Scholar 

  64. Schluter H, Offers E, Bruggemann G, van der Giet M, Tepel M, Nordhoff E, Karas M, Spieker C, Witzel H, Zidek W (1994) Diadenosine phosphates and the physiological control of blood pressure. Nature 367:186–188

    Article  PubMed  CAS  Google Scholar 

  65. Sheng M, Lee SH (2001) AMPA receptor trafficking and the control of synaptic transmission. Cell 105:825–828

    Article  PubMed  CAS  Google Scholar 

  66. Short SM, Boyer JL, Juliano RL (2000) Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase. J Biol Chem 275:12970–12977

    Article  PubMed  CAS  Google Scholar 

  67. Soltoff SP, Avraham H, Avraham S, Cantley LC (1998) Activation of the P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J Biol Chem 273:2653–2660

    Article  PubMed  CAS  Google Scholar 

  68. Vacca F, Amadio S, Sancesario G, Bernardi G, Volonté C (2004) P2X3 receptor localizes into lipid rafts in neuronal cells. J Neurosci Res 76:653–661

    Article  PubMed  CAS  Google Scholar 

  69. van der Giet M, Schmidt S, Tölle M, Jankowski J, Schlüter H, Zidek W, Tepel M (2002) Effect of dinucleoside polyphosphates on regulation of coronary vascular tone. Eur J Pharmacol 448:207–213

    Article  PubMed  Google Scholar 

  70. Varshavsky A (1983) Diadenosine 5′, 5″-P1, P4-tetraphosphate: a pleiotropically acting alarmone? Cell 34:711–712

    Article  PubMed  CAS  Google Scholar 

  71. Vartanian A, Alexandrov I, Prudowski I, McLennan A, Kisselev L (1999) Ap4A induces apoptosis in human cultured cells. FEBS Lett 456:175–180

    Article  PubMed  CAS  Google Scholar 

  72. Vartanian AA, Suzuki H, Poletaev AI (2003) The involvement of diadenosine 5′,5′′′-P1,P4-tetraphosphate in cell cycle arrest and regulation of apoptosis. Biochem Pharmacol 65:227–235

    Article  PubMed  CAS  Google Scholar 

  73. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  74. Vigne P, Breittmayer JP, Frelin C (2000) Diadenosine polyphosphates as antagonists of the endogeneous P2Y1 receptor in rat brain capillary endothelial cells of the B7 and B10 clones. Br J Pharmacol 129:1506–1512

    Article  PubMed  CAS  Google Scholar 

  75. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661

    Article  PubMed  CAS  Google Scholar 

  76. Westover EJ, Covey DF, Brockman HL, Brown RE, Pike LJ (2003) Cholesterol depletion in site-specific increases in epidermal growth factor receptor phosphorylation due to membrane level effects. Studies with cholesterol enantiomers. J Biol Chem 278:51125–51133

    Article  PubMed  CAS  Google Scholar 

  77. Xu G-Y and Huang L-YM (2004) Ca2+/calmodulin-dependent protein kinase II potentiates ATP responses by promoting trafficking of P2X receptors. PNAS 101:11868–11873

    Article  PubMed  CAS  Google Scholar 

  78. Zwick E, Hackel PO, Prenzel N, Ullrich A (1999) The EGF receptor as central transducer of heterologous signaling systems. Trends Pharmacol Sci 20:408–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministerio de Educación y Ciencia (BFU2005-02079) and the Fundación La Caixa (BM05-114-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Teresa Miras-Portugal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delicado, E.G., Miras-Portugal, M.T., Carrasquero, L.M.G. et al. Dinucleoside polyphosphates and their interaction with other nucleotide signaling pathways. Pflugers Arch - Eur J Physiol 452, 563–572 (2006). https://doi.org/10.1007/s00424-006-0066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0066-5

Keywords

Navigation