Skip to main content
Log in

Mechanisms responsible for quantal Ca2+ release from inositol trisphosphate-sensitive calcium stores

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Activation of cells by hormones, growth factors or neurotransmitters leads to an increased production of inositol trisphosphate (InsP3) and, after activation of the InsP3 receptor (InsP3R), to Ca2+ release from intracellular Ca2+ stores. The release of intracellular Ca2+ is characterised by a graded response when submaximal doses of agonists are used. The basic phenomenon, called “quantal Ca2+ release”, is that even the maintained presence of a submaximal dose of agonist or of InsP3 for long time periods (up to 20 min) provokes only a partial release of Ca2+. This partial, or quantal, release phenomenon is due to the fact that the initially very rapid InsP3-induced Ca2+ release eventually develops into a much slower release phase. Physiologically, quantal release allows the Ca2+ stores to function as increment detectors and to induce local Ca2+ responses. The basic mechanism for quantal release of Ca2+ is presently not known. Possible mechanisms to explain the quantal behaviour of InsP3- induced Ca2+ release include the presence of InsP3Rs with varying sensitivities for InsP3, heterogeneous InsP3R distribution, intrinsic inactivation of the InsP3Rs, and regulation of the InsP3Rs by Ca2+ store content. This article reviews critically the evidence for the various mechanisms and evaluates their functional importance. A Ca2+-mediated conformational change of the InsP3R is most likely the key feature of the mechanism for quantal Ca2+ release, but the exact mode of operation remains unclear. It should also be pointed out that in intact cells more than one mechanism can be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  2. Berridge MJ (1995) Capacitative calcium entry. Biochem J 312:1–11

    PubMed  CAS  Google Scholar 

  3. Bezprozvanny I, Ehrlich BE (1994) Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J Gen Physiol 104:821–856

    Article  PubMed  CAS  Google Scholar 

  4. Bezprozvanny I, Ehrlich BE (1995) Inositol (1,4,5)-trisphosphate (InsP3) receptor. J Membr Biol 145:205–217

    PubMed  CAS  Google Scholar 

  5. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3 and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  PubMed  CAS  Google Scholar 

  6. Bootman MD, Berridge MJ (1995) The elemental principles of calcium signaling. Cell 83:675–678

    Article  PubMed  CAS  Google Scholar 

  7. Bootman MD, Cheek TR, Moreton RB, Bennett DL, Berridge MJ (1994) Smoothly graded Ca2+ release from inositol 1,4,5-trisphosphate-sensitive Ca2+ stores. J Biol Chem 269: 24783–24791

    PubMed  CAS  Google Scholar 

  8. Bootman MD, Missiaen L, Parys JB, De Smedt H, Casteels R (1995) Control of inositol 1,4,5-trisphosphate-induced Ca2+ release by cytosolic Ca2+. Biochem J 366:445–451

    Google Scholar 

  9. Brostrom CO, Brostrom MA (1990) Calcium-dependent regulation of protein synthesis in intact mammalian cells. Annu Rev Physiol 52:577–590

    Article  PubMed  CAS  Google Scholar 

  10. Camacho P, Lechleiter JD (1995) Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82:765–771

    Article  PubMed  CAS  Google Scholar 

  11. Cheek TR, Moreton RB, Berridge MJ, Stauderman KA, Murawsky MM, Bootman MD (1993) Quantal Ca2+ release from caffeine-sensitive stores in adrenal chromaffin cells. J Biol Chem 268:27076–27083

    PubMed  CAS  Google Scholar 

  12. Clapham DE (1995) Calcium signaling. Cell 80:259–268

    Article  PubMed  CAS  Google Scholar 

  13. Combettes L, Claret M, Champeil P (1992) Do submaximal InsP3 concentrations only induce the partial discharge of permeabilized hepatocyte calcium pools because of the concomitant reduction of intraluminal Ca2+ concentration? FEBS Lett 301:287–290

    Article  PubMed  CAS  Google Scholar 

  14. Combettes L, Claret M, Champeil P (1993) Calcium control on InsP3-induced discharge of calcium from permeabilised hepatocyte pools. Cell Calcium 14:279–292

    Article  PubMed  CAS  Google Scholar 

  15. Combettes L, Cheek TR, Taylor CW (1996) Regulation of inositol trisphosphate receptors by luminal Ca2+ contributes to quantal Ca2+ mobilization. EMBO J 15:2086–2093

    PubMed  CAS  Google Scholar 

  16. Danoff SK, Supattapone A, Snyder SH (1988) Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem 254:701–705

    CAS  Google Scholar 

  17. DeLisle S (1991) The four dimensions of calcium signalling in Xenopus oocytes. Cell Calcium 12:217–227

    Article  PubMed  CAS  Google Scholar 

  18. De Smedt H, Missiaen L, Parys JB, Bootman MD, Mertens L, Van Den Bosch L, Casteels R (1994) Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem 269:21691–21698

    PubMed  Google Scholar 

  19. Díaz-Munoz M, Hamilton SL, Kaetzel MA, Hazarika P, Dedman JR (1990) Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin). J Biol Chem 265:15894–15899

    PubMed  Google Scholar 

  20. Fasolato C, Innocenti B, Pozzan T (1994) Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci 15:77–83

    Article  PubMed  CAS  Google Scholar 

  21. Ferris CD, Cameron AM, Huganir RL, Snyder SH (1992) Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors. Nature 356:350–352

    Article  PubMed  CAS  Google Scholar 

  22. Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443–446

    Article  PubMed  CAS  Google Scholar 

  23. Furuichi T, Mikoshiba K (1995) Inositol 1,4,5-trisphosphate receptor-mediated Ca2+ signaling in the brain. J Neurochem 64:953–960

    Article  PubMed  CAS  Google Scholar 

  24. Furuichi T, Kohda K, Miyawaki A, Mikoshiba K (1994) Intracellular channels. Curr Opin Neurobiol 4:294–303

    Article  PubMed  CAS  Google Scholar 

  25. Gamberucci A, Fulceri R, Tarroni P, Giunti R, Marcolongo P, Sorrentino V, Benedetti A (1995) Calcium pools in Ehrlich carcinoma cells. A major, high affinity Ca2+ pool is sensitive to both inositol 1,4,5-trisphosphate and thapsigargin. Cell Calcium 17:431–441

    Article  PubMed  CAS  Google Scholar 

  26. Gaut JR, Hendershot LM (1993) The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 5:589–595

    Article  PubMed  CAS  Google Scholar 

  27. Guo W, Campbell KP (1995) Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J Biol Chem 270:9027–9030

    Article  PubMed  CAS  Google Scholar 

  28. Györke S, Fill M (1993) Ryanodine receptor adaptation: control mechanism of Ca2+-induced Ca2+ release in heart. Science 260:807–809

    Article  PubMed  Google Scholar 

  29. Hajnóczky G, Thomas AP (1994) The inositol trisphosphate calcium channel is inactivated by inositol trisphosphate. Nature 370:474–477

    Article  PubMed  Google Scholar 

  30. Hirose K, Iino M (1994) Heterogeneity of channel density in inositol-1,4,5-trisphosphate-sensitive Ca2+ stores. Nature 372:791–794

    PubMed  CAS  Google Scholar 

  31. Hirota J, Michikawa T, Miyawaki A, Furuichi T, Okura I, Mikoshiba K (1995) Kinetics of calcium release by immunoaffinity-purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles. J Biol Chem 270:19046–19051

    Article  PubMed  CAS  Google Scholar 

  32. Hirota J, Michikawa T, Miyawaki A, Takahashi M, Tanzawa K, Okura I, Furuichi T, Mikoshiba K (1995) Adenophostinmediated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett 368:248–252

    Article  PubMed  CAS  Google Scholar 

  33. Horne JH, Meyer T (1995) Luminal calcium regulates the inositol trisphosphate receptor of rat basophilic leukemia cells at a cytosolic site. Biochemistry 34:12738–12746

    Article  PubMed  CAS  Google Scholar 

  34. Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103–1122

    Article  PubMed  CAS  Google Scholar 

  35. Ikemoto N, Ronjat M, Meszaros LG, Koshita M (1989) Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 28: 6764–6771

    Article  PubMed  CAS  Google Scholar 

  36. Irvine RF (1990) “Quantal” Ca2+ release and the control of Ca2+ entry by inositol phosphates — a possible mechanism. FEBS Lett 263:5–9

    Article  PubMed  CAS  Google Scholar 

  37. Joseph SK, Lin C, Pierson S, Thomas AP, Maranto AR (1995) Heteroligomers of type-I and type-III inositol trisphosphate receptors in WB rat liver epithelial cells. J Biol Chem 270:23310–23316

    Article  PubMed  CAS  Google Scholar 

  38. Kasai H, Li YX, Miyashita Y (1993) Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell 74:669–677

    Article  PubMed  CAS  Google Scholar 

  39. Koch GLE (1990) The endoplasmic reticulum and calcium storage. BioEssays 12:527–531

    Article  PubMed  CAS  Google Scholar 

  40. Loirand G, Grégoire G, Pacaud P (1994) Photoreleased inositol 1,4,5-trisphosphate-induced response in single smooth muscle cells of rat portal vein. J Physiol (Lond) 479:41–52

    CAS  Google Scholar 

  41. Loomis-Husselbee JW, Dawson AP (1993) A steady-state mechanism can account for the properties of inositol 2,4,5-trisphosphate-stimulated Ca2+ release from permeabilized L1210 cells. Biochem J 289:861–866

    PubMed  CAS  Google Scholar 

  42. Meyer T, Stryer L (1990). Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc Natl Acad Sci U S A 87:3841–3845

    Article  PubMed  CAS  Google Scholar 

  43. Meyer T, Wensel T, Stryer L (1990) Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. Biochemistry 29:32–37

    Article  PubMed  CAS  Google Scholar 

  44. Mignery GA, Südhof TC (1990) The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J 9:3893–3898

    PubMed  CAS  Google Scholar 

  45. Mignery GA, Johnston PA, Südhof TC (1992) Mechanism of Ca2+ inhibition of inositol 1,4,5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor. J Biol Chem 267:7450–7455

    PubMed  CAS  Google Scholar 

  46. Milner RE, Famulski KS, Michalak M (1992) Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells. Mol Cell Biochem 112:1–13

    Article  PubMed  CAS  Google Scholar 

  47. Missiaen L, De Smedt H, Droogmans G, Casteels R (1992) Ca2+ release induced by inositol 1,4,5-trisphosphate is a steadystate phenomenon controlled by luminal Ca2+ in permeabilized cells. Nature 357:599–602

    Article  PubMed  CAS  Google Scholar 

  48. Missiaen L, Taylor CW, Berridge MJ (1992) Luminal Ca2+ promoting spontaneous Ca2+ release from inositol trisphosphate-sensitive stores of rat hepatocytes. J Physiol (Lond) 455:623–640

    CAS  Google Scholar 

  49. Missiaen L, De Smedt H, Parys JB, Casteels R (1994) Co-activation of inositol trisphosphate-induced Ca2+ release by cytosolic Ca2+ is loading-dependent. J Biol Chem 269:7238–7242

    PubMed  CAS  Google Scholar 

  50. Missiaen L, Parys JB, De Smedt H, Lemaire FX, Sienaert I, Bootman MD, Casteels R (1995) Slow kinetics of InsP3-induced Ca2+ release: differences between uniand bi-directional 45Ca2+ fluxes. Cell Calcium 18:100–110

    Article  PubMed  CAS  Google Scholar 

  51. Missiaen L, Parys JB, De Smedt H, Sienaert I, Henning RH, Casteels R (1995) Opening up Ca2+ stores with InsP3. Nature 376:299–300

    Article  PubMed  CAS  Google Scholar 

  52. Missiaen L, De Smedt H, Parys JB, Sienaert I, Vanlingen S, Casteels R (1996) Effects of luminal Ca2+ on inositol trisphosphate-induced Ca2+ release: facts or artifacts? Cell Calcium 19:91–92

    Article  PubMed  CAS  Google Scholar 

  53. Monkawa T, Miyawaki A, Sugiyama T, Yoneshima H, Yamamoto-Hino M, Furuichi T, Saruta T, Hasegawa M, Mikoshiba K (1995) Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem 270:14700–14704

    Article  PubMed  CAS  Google Scholar 

  54. Muallem S, Pandol SJ, Beeker TG (1989) Hormone-evoked calcium release from intracellular stores is a quantal process. J Biol Chem 264:205–212

    PubMed  CAS  Google Scholar 

  55. Newton CL, Mignery GA, Südhof TC (1994) Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269:28613–28619

    PubMed  CAS  Google Scholar 

  56. Nunn DL, Taylor CW (1992) Luminal Ca2+ increases the sensitivity of Ca2+ stores to inositol 1,4,5-trisphosphate. Mol Pharmacol 41:115–119

    PubMed  CAS  Google Scholar 

  57. Oldershaw KA, Taylor CW (1993) Luminal Ca2+ increases the affinity of inositol 1,4,5-trisphosphate for its receptor. Biochem J 292:631–633

    PubMed  CAS  Google Scholar 

  58. Parys JB, Bezprozvanny I (1995) The inositol trisphosphate receptor of Xenopus oocytes. Cell Calcium 18:353–363

    Article  PubMed  CAS  Google Scholar 

  59. Parys JB, Sernett SW, DeLisle S, Snyder PM, Welsh MJ, Campbell KP (1992) Isolation, characterization and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. J Biol Chem 267:18776–18782

    PubMed  CAS  Google Scholar 

  60. Parys JB, Missiaen L, De Smedt H, Casteels R (1993) Loading dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in the clonal cell line A7r5. Implications for the mechanism of quantal release. J Biol Chem 268:25206–25212

    PubMed  CAS  Google Scholar 

  61. Parys JB, Missiaen L, De Smedt H, Sienaert I, Henning RH, Casteels R (1995) Quantal release of calcium in permeabilized A7r5 cells is not caused by intrinsic inactivation of the inositol trisphosphate receptor. Biochem Biophys Res Commun 209:451–456

    Article  PubMed  CAS  Google Scholar 

  62. Parys JB, De Smedt H, Missiaen L, Bootman MD, Sienaert I, Casteels R (1995) Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Cell Calcium 17:239–249

    Article  PubMed  CAS  Google Scholar 

  63. Patel S, Taylor CW (1995) Quantal responses to inositol 1,4,5-trisphosphate are not a consequence of Ca2+ regulation of inositol 1,4,5-trisphosphate receptors. Biochem J 312:789–794

    PubMed  CAS  Google Scholar 

  64. Petersen OH (1992) Stimulus-secretion coupling: cytoplasmic calcium signals and control of ion channels in exocrine acinar cells. J Physiol (Lond) 448:1–51

    CAS  Google Scholar 

  65. Petersen OH, Petersen CCH, Kasai H (1994) Calcium and hormone action. Annu Rev Physiol 56:297–319

    Article  PubMed  CAS  Google Scholar 

  66. Pietri F, Hilly M, Mauger JP (1990) Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor. J Biol Chem 265:17478–17485

    PubMed  CAS  Google Scholar 

  67. Put FHMM van de, De Pont JJHHM, Willems PHGM (1994) Heterogeneity between intracellular Ca2+ stores as the underlying principle of quantal Ca2+ release by inositol 1,4,5-trisphosphate in permeabilized pancreatic acinar cells. J Biol Chem 269:12438–12443

    PubMed  Google Scholar 

  68. Putney JW Jr, Bird GSJ (1993) The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev 14:610–631

    PubMed  CAS  Google Scholar 

  69. Sambrook JF (1990) The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61:197–199

    Article  PubMed  CAS  Google Scholar 

  70. Schrenzel J, Demaurex N, Foti M, Van Delden C, Jacquet J, Mayr G, Lew DP, Krause KH (1995) Highly cooperative Ca2+ elevations in response to Ins(1,4,5)P3 microperfusion through a patch clamp pipette. Biophys J 69:2378–2391

    Article  PubMed  CAS  Google Scholar 

  71. Short AD, Klein MG, Schneider MF, Gill DL (1993) Inositol 1,4,5-trisphosphate-mediated quantal Ca2+ release measured by high resolution imaging of Ca2+ within organelles. J Biol Chem 268:25887–25893

    PubMed  CAS  Google Scholar 

  72. Shuttleworth TJ (1992) Ca2+ release from inositol trisphosphate-sensitive stores is not modulated by intraluminal [Ca2+]. J Biol Chem 267:3573–3576

    PubMed  CAS  Google Scholar 

  73. Shuttleworth TJ (1995) A re-evaluation of the apparent effects of luminal Ca2+ on inositol 1,4,5-trisphosphate-induced Ca2+ release. Cell Calcium 17:393–398

    Article  PubMed  CAS  Google Scholar 

  74. Sienaert I, Missiaen L, Parys JB, De Smedt H, Casteels (1995) Functional and molecular characterization of the luminal Ca2+ binding site of the inositol trisphosphate receptor (abstract). Pflügers Arch 430:R 160

    Google Scholar 

  75. Südhof TC, Newton CL, Archer III BT, Ushkaryov YA, Mignery GA (1991) Structure of a novel InsP3 receptor. EMBO J 10:3199–3206

    PubMed  Google Scholar 

  76. Sugiyama T, Goldman WF (1995) Conversion between permeability states of IP3 receptors in cultured smooth muscle cells. Am J Physiol 269:C813-C818

    PubMed  CAS  Google Scholar 

  77. Takahashi M, Tanzawa K, Takahashi S (1994) Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 269:369–372

    PubMed  CAS  Google Scholar 

  78. Taylor CW, Potter BVL (1990) The size of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores depends on inositol 1,4,5-trisphosphate concentration. Biochem J 266:189–194

    PubMed  CAS  Google Scholar 

  79. Taylor CW, Traynor D (1995) Calcium and inositol trisphosphate receptors. J Membr Biol 145:109–118

    PubMed  CAS  Google Scholar 

  80. Thorn P, Lawrie AM, Smith PM, Gallacher DV, Petersen OH (1993) Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74:661–668

    Article  PubMed  CAS  Google Scholar 

  81. Van Delden C, Favre C, Spät A, Cerny E, Krause KH, Lew DP (1992) Purification of an inositol 1,4,5-trisphosphate-binding calreticulin-containing intracellular compartment of HL-60 cells. Biochem J 281:651–656

    PubMed  Google Scholar 

  82. Van Delden C, Foti M, Lew DP, Krause KH (1993) Ca2+ and Mg2+ regulation of inositol 1,4,5-triphosphate binding in myeloid cells. J Biol Chem 268:12443–12448

    PubMed  Google Scholar 

  83. Wang SSH, Alousi AA, Thompson SH (1995) The lifetime of inositol 1,4,5-trisphosphate in single cells. J Gen Physiol 105:149–171

    Article  PubMed  CAS  Google Scholar 

  84. Wojcikiewicz RJH (1995) Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem 270:11678–11683

    Article  PubMed  CAS  Google Scholar 

  85. Wojcikiewicz RJH, He Y (1995) Type I, II and III inositol 1,4,5-trisphosphate receptor co-immunoprecipitation as evidence for the existence of heterotetrameric receptor complexes. Biochem Biophys Res Commun 213:334–341

    Article  PubMed  CAS  Google Scholar 

  86. Yao Y, Choi J, Parker I (1995) Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol (Lond) 482:533–553

    CAS  Google Scholar 

  87. Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M, Ryo Y, Furuichi T, Mikoshiba K (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 308:83–88

    PubMed  CAS  Google Scholar 

  88. Yoo SH, Lewis MS (1995) Thermodynamic study of the pH-dependent interaction of chromogranin A with an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor. Biochemistry 34:632–638

    Article  PubMed  CAS  Google Scholar 

  89. Zhang BX, Zhao H, Muallem S (1993) Ca2+-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. J Biol Chem 268:10997–11001

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parys, J.B., Missiaen, L., De Smedt, H. et al. Mechanisms responsible for quantal Ca2+ release from inositol trisphosphate-sensitive calcium stores. Pflügers Arch — Eur J Physiol 432, 359–367 (1996). https://doi.org/10.1007/s004240050145

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050145

Key words

Navigation