Skip to main content
Log in

Glutamate receptors of the delta family are widely expressed in the adult brain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

An Erratum to this article was published on 20 August 2014

Abstract

Recent reports point to critical roles of glutamate receptor subunit delta2 (GluD2) at excitatory synapses and link GluD1 gene alteration to schizophrenia but the expression patterns of these subunits in the brain remain almost uncharacterized. We examined the distribution of GluD1–2 mRNAs and proteins in the adult rodent brain, focusing mainly on GluD1. In situ hybridization revealed widespread neuronal expression of the GluD1 mRNA, with higher levels occurring in several forebrain regions and lower levels in cerebellum. Quantitative RT-PCR assessed differential GluD1 expression in cortex and cerebellum, and revealed GluD2 expression in cortex, albeit at markedly lower level than in cerebellum. Likewise, a high GluD1/GluD2 mRNA ratio was observed in cortex and a low ratio in cerebellum. GluD1 and GluD2 mRNAs were co-expressed in single cortical and hippocampal neurons, with a large predominance of GluD1. Western blots using GluD1- and GluD2-specific antibodies showed expression of both subunits in various brain structures, but not in non-nervous tissues examined. Both delta subunits were upregulated during postnatal development. Widespread neuronal expression of the GluD1 protein was confirmed using immunohistochemistry. Examination at the electron microscopic level in the hippocampus revealed that GluD1 was mainly localized at postsynaptic density of excitatory synapses on pyramidal cells. Control experiments performed using mice carrying deletion of the GluD1- or the GluD2-encoding gene confirmed the specificity of the present mRNA and protein analyses. Our results support a role for the delta family of glutamate receptors at excitatory synapses in neuronal networks throughout the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ady V, Perroy J, Tricoire L, Piochon C, Dadak S, Chen X, Dusart I, Fagni L, Lambolez B, Levenes C (2014) Type 1 metabotropic glutamate receptors (mGlu1) trigger the gating of GluD2 delta glutamate receptors. EMBO Rep 15(1):103–109. doi:10.1002/embr.201337371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angulo MC, Lambolez B, Audinat E, Hestrin S, Rossier J (1997) Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical nonpyramidal cells. J Neurosci 17(17):6685–6696

    CAS  PubMed  Google Scholar 

  • Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197(3):1267–1276. doi:10.1006/bbrc.1993.2614

    Article  CAS  PubMed  Google Scholar 

  • Bayer S, Altman J (1991) Neocortical development. Raven Press, New York

    Google Scholar 

  • Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24. doi:10.1146/annurev.neuro.30.051606.094225

    Article  CAS  PubMed  Google Scholar 

  • Blue ME, Parnavelas JG (1983) The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis. J Neurocytol 12(4):599–616

    Article  CAS  PubMed  Google Scholar 

  • Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, Hestrin S, Rossier J (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17(10):3894–3906

    CAS  PubMed  Google Scholar 

  • Cauli B, Porter JT, Tsuzuki K, Lambolez B, Rossier J, Quenet B, Audinat E (2000) Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc Natl Acad Sci USA 97(11):6144–6149 (97/11/6144)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13(3):99–104 pii:0166-2236(90)90185-D

    Article  CAS  PubMed  Google Scholar 

  • Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang KY, Huganir RL, Valle D, Pulver AE (2005) Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 77(6):918–936. doi:10.1086/497703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferezou I, Hill EL, Cauli B, Gibelin N, Kaneko T, Rossier J, Lambolez B (2007) Extensive overlap of mu-opioid and nicotinic sensitivity in cortical interneurons. Cereb Cortex 17(8):1948–1957. doi:10.1093/cercor/bhl104

    Article  PubMed  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470. doi:10.1002/(SICI)1098-1063(1996)

    Article  CAS  PubMed  Google Scholar 

  • Gallopin T, Geoffroy H, Rossier J, Lambolez B (2006) Cortical sources of CRF, NKB, and CCK and their effects on pyramidal cells in the neocortex. Cereb Cortex 16(10):1440–1452. doi:10.1093/cercor/bhj081

    Article  PubMed  Google Scholar 

  • Gao J, Maison SF, Wu X, Hirose K, Jones SM, Bayazitov I, Tian Y, Mittleman G, Matthews DB, Zakharenko SS, Liberman MC, Zuo J (2007) Orphan glutamate receptor delta1 subunit required for high-frequency hearing. Mol Cell Biol 27(12):4500–4512. doi:10.1128/MCB.02051-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gras C, Amilhon B, Lepicard EM, Poirel O, Vinatier J, Herbin M, Dumas S, Tzavara ET, Wade MR, Nomikos GG, Hanoun N, Saurini F, Kemel ML, Gasnier B, Giros B, El Mestikawy S (2008) The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nat Neurosci 11(3):292–300. doi:10.1038/nn2052

    Article  CAS  PubMed  Google Scholar 

  • Guastavino JM, Sotelo C, Damez-Kinselle I (1990) Hot-foot murine mutation: behavioral effects and neuroanatomical alterations. Brain Res 523(2):199–210 pii:0006-8993(90)91488-3

    Article  CAS  PubMed  Google Scholar 

  • Guo SZ, Huang K, Shi YY, Tang W, Zhou J, Feng GY, Zhu SM, Liu HJ, Chen Y, Sun XD, He L (2007) A case-control association study between the GRID1 gene and schizophrenia in the Chinese Northern Han population. Schizophr Res 93(1–3):385–390. doi:10.1016/j.schres.2007.03.007

    Article  PubMed  Google Scholar 

  • Hamori J, Somogyi J (1983) Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol 220(4):365–377. doi:10.1002/cne.902200402

    Article  CAS  PubMed  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19. doi:10.1186/gb-2007-8-2-r19

    Article  PubMed Central  PubMed  Google Scholar 

  • Kakegawa W, Miyazaki T, Emi K, Matsuda K, Kohda K, Motohashi J, Mishina M, Kawahara S, Watanabe M, Yuzaki M (2008) Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2. J Neurosci 28(6):1460–1468. doi:10.1523/JNEUROSCI.2553-07.2008

    Article  CAS  PubMed  Google Scholar 

  • Karagiannis A, Gallopin T, David C, Battaglia D, Geoffroy H, Rossier J, Hillman EM, Staiger JF, Cauli B (2009) Classification of NPY-expressing neocortical interneurons. J Neurosci 29(11):3642–3659. doi:10.1523/JNEUROSCI.0058-09.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81(2):245–252 pii:0092-8674(95)90334-8

    Article  CAS  PubMed  Google Scholar 

  • Kato AS, Knierman MD, Siuda ER, Isaac JT, Nisenbaum ES, Bredt DS (2012) Glutamate receptor delta2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cgamma, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 32(44):15296–15308. doi:10.1523/JNEUROSCI.0705-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Kuroyanagi T, Yokoyama M, Hirano T (2009) Postsynaptic glutamate receptor delta family contributes to presynaptic terminal differentiation and establishment of synaptic transmission. Proc Natl Acad Sci USA 106(12):4912–4916. doi:10.1073/pnas.0900892106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lalouette A, Lohof A, Sotelo C, Guenet J, Mariani J (2001) Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105(2):443–455. pii:S0306452201001932

    Article  CAS  PubMed  Google Scholar 

  • Lambolez B, Audinat E, Bochet P, Crepel F, Rossier J (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9(2):247–258. pii:0896-6273(92)90164-9

    Article  CAS  PubMed  Google Scholar 

  • Lambolez B, Ropert N, Perrais D, Rossier J, Hestrin S (1996) Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc Natl Acad Sci USA 93(5):1797–1802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen OP (1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17(2):834–842

    CAS  PubMed  Google Scholar 

  • Lomeli H, Sprengel R, Laurie DJ, Kohr G, Herb A, Seeburg PH, Wisden W (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315(3):318–322. pii:0014-5793(93)81186-4

    Article  CAS  PubMed  Google Scholar 

  • Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8(7):1488–1500

    Article  CAS  PubMed  Google Scholar 

  • Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, Fukazawa Y, Ito-Ishida A, Kondo T, Shigemoto R, Watanabe M, Yuzaki M (2010) Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science 328(5976):363–368. doi:10.1126/science.1185152

    Article  CAS  PubMed  Google Scholar 

  • Mayat E, Petralia RS, Wang YX, Wenthold RJ (1995) Immunoprecipitation, immunoblotting, and immunocytochemistry studies suggest that glutamate receptor delta subunits form novel postsynaptic receptor complexes. J Neurosci 15(3 Pt 2):2533–2546

    CAS  PubMed  Google Scholar 

  • Orth A, Tapken D, Hollmann M (2013) The delta subfamily of glutamate receptors: characterization of receptor chimeras and mutants. Eur J Neurosci 37(10):1620–1630. doi:10.1111/ejn.12193

    Article  PubMed  Google Scholar 

  • Pachot A, Blond JL, Mougin B, Miossec P (2004) Peptidylpropyl isomerase B (PPIB): a suitable reference gene for mRNA quantification in peripheral whole blood. J Biotechnol 114(1–2):121–124. doi:10.1016/j.jbiotec.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  • Ryu K, Yokoyama M, Yamashita M, Hirano T (2012) Induction of excitatory and inhibitory presynaptic differentiation by GluD1. Biochem Biophys Res Commun 417(1):157–161. doi:10.1016/j.bbrc.2011.11.075

    Article  CAS  PubMed  Google Scholar 

  • Schmid SM, Hollmann M (2008) To gate or not to gate: are the delta subunits in the glutamate receptor family functional ion channels? Mol Neurobiol 37(2–3):126–141. doi:10.1007/s12035-008-8025-0

    Article  CAS  PubMed  Google Scholar 

  • Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322(1):121–135. doi:10.1002/cne.903220110

    Article  CAS  PubMed  Google Scholar 

  • Szabo A, Somogyi J, Cauli B, Lambolez B, Somogyi P, Lamsa KP (2012) Calcium-permeable AMPA receptors provide a common mechanism for LTP in glutamatergic synapses of distinct hippocampal interneuron types. J Neurosci 32(19):6511–6516. doi:10.1523/JNEUROSCI.0206-12.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takayama C, Nakagawa S, Watanabe M, Mishina M, Inoue Y (1995) Light- and electron-microscopic localization of the glutamate receptor channel delta 2 subunit in the mouse Purkinje cell. Neurosci Lett 188(2):89–92. pii:030439409511403J

    Article  CAS  PubMed  Google Scholar 

  • Tonnes J, Stierli B, Cerletti C, Behrmann JT, Molnar E, Streit P (1999) Regional distribution and developmental changes of GluR1-flop protein revealed by monoclonal antibody in rat brain. J Neurochem 73(5):2195–2205

    CAS  PubMed  Google Scholar 

  • Treutlein J, Muhleisen TW, Frank J, Mattheisen M, Herms S, Ludwig KU, Treutlein T, Schmael C, Strohmaier J, Bosshenz KV, Breuer R, Paul T, Witt SH, Schulze TG, Schlosser RG, Nenadic I, Sauer H, Becker T, Maier W, Cichon S, Nothen MM, Rietschel M (2009) Dissection of phenotype reveals possible association between schizophrenia and glutamate receptor delta 1 (GRID1) gene promoter. Schizophr Res 111(1–3):123–130. doi:10.1016/j.schres.2009.03.011

    Article  PubMed  Google Scholar 

  • Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141(6):1068–1079. doi:10.1016/j.cell.2010.04.035

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed Central  PubMed  Google Scholar 

  • Weldon S, Ambroz K, Schutz-Geschwender A, Olive DM (2008) Near-infrared fluorescence detection permits accurate imaging of loading controls for Western blot analysis. Anal Biochem 375(1):156–158. doi:10.1016/j.ab.2007.11.035

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Rimerman R, Scofield MA, Dravid SM (2011) Mutations in the transmembrane domain M3 generate spontaneously open orphan glutamate delta1 receptor. Brain Res 1382:1–8. doi:10.1016/j.brainres.2010.12.086

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Gupta SC, Hillman BG, Bhatt JM, Stairs DJ, Dravid SM (2012) Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors. PLoS One 7(3):e32969. doi:10.1371/journal.pone.0032969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav R, Hillman BG, Gupta SC, Suryavanshi P, Bhatt JM, Pavuluri R, Stairs DJ, Dravid SM (2013) Deletion of glutamate delta-1 receptor in mouse leads to enhanced working memory and deficit in fear conditioning. PLoS One 8(4):e60785. doi:10.1371/journal.pone.0060785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamasaki M, Miyazaki T, Azechi H, Abe M, Natsume R, Hagiwara T, Aiba A, Mishina M, Sakimura K, Watanabe M (2011) Glutamate receptor delta2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells. J Neurosci 31(9):3362–3374. doi:10.1523/JNEUROSCI.5601-10.2011

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki M, Araki K, Shibata A, Mishina M (1992) Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem Biophys Res Commun 183(2):886–892 pii:0006-291X(92)90566-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Delphine Bouteiller, Thierry Galli, Yannick Marie and Agathe Verraes for their valuable help. We thank Jian Zuo and Carole Levenes for sharing GRID1 KO and GRID2 HO mouse line respectively. S.N. is a fellow of the Nakajima Foundation. This work was supported by grants from Agence Nationale de la Recherche (ANR# BLAN-SVSE4-LS-110624, “IHU Institut de Neurosciences Translationnelles de Paris”; “Investissements d’avenir” ANR-10-IAIHU-06), Fondation pour la Recherche sur le Cerveau/Rotary Club de France, and from the Spanish Ministry of Education and Science (BFU2012-38348 and CONSOLIDER CSD2008-00005) to R.L.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Tricoire.

Additional information

B. Lambolez and L. Tricoire contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hepp, R., Hay, Y.A., Aguado, C. et al. Glutamate receptors of the delta family are widely expressed in the adult brain. Brain Struct Funct 220, 2797–2815 (2015). https://doi.org/10.1007/s00429-014-0827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0827-4

Keywords

Navigation